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ABSTRACT

Background

The Cox proportional hazards regression model has become the most used tool in the analysis
of censored survival data. However, some features of the Cox model may cause problems for
the analyst or an interpreter of the data. They include the restrictive assumption of
proportional hazards for covariate effects, and “loss” (non-estimation) of the baseline hazard
function induced by conditioning on event times. Compared with Cox Proportional Hazard
model, parametric models are different in the way they exploit the information contained in
the data. Parametric models specify how the hazard varies over time (hazard shape), which
may provide insights into and guidance on how best to compare outcomes. This study
compares the goodness of fit of Cox proportional hazard model and parametric survival
models in modelling the household environmental and social economical determinants of

under-five child mortality

Methods

The study used the 2010 Malawi Demographic Health survey data. The Cox Proportional
hazard model was used and the proportional hazard (PH) assumption was assessed using both
the graphical method and by adding time-dependent covariate in the Cox model. Good-ness
of fit of the Cox PH model was also assessed using Cox Snell residuals. The parametric
proportional hazard as well as accelerated failure time models was also used. The Weibull,
lognormal, log-logistic, exponential and Gompertz model were fit and to find the most
appropriate model, these models were compared using Akaike Information Criterion (AIC)

and the goodness of fit for all the parametric models was assessed using Cox-Snell residuals.



Results

The Cox Proportional hazard model violated the assumption of proportionality and was not
fitting the data well. The lognormal model was found to fit the data well and since this model
is expressed in terms of accelerated failure time model, the violation of the proportion
hazards assumption was overcome. Mother education, father education, house hold size,
source of cooking fuel, type of toilet facility and wealth index are found to be significantly
associated with child mortality. On the other hand, area of residence, source of water and

access to electricity are found to be not significantly associated with child mortality.

Conclusion

The results obtained from the Cox PH model are not as effective as those obtained from the
parametric AFT model since the PH assumption was found to be violated in the Cox PH
model. Log-normal AFT model is found to be the most appropriate parametric model to be
used in the analysis of child survival. Hence, researchers in child mortality using survival
analysis can use the log-normal model as this will give them the more accurate and efficient

results.

Key words: under-five mortality, Cox-Snell residuals, Cox proportional hazard, Weibull

distribution, log-normal distribution, log-logistic distribution, Gompertz distribution,

exponential distribution.
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Chapter 1: Introduction

1.1 Background

The Cox proportional hazards regression model has become the most used tool in the
analysis of censored survival data (Moran 2002). Researchers in medical science often
tend to prefer semi parametric models instead of the parametric models because the
relationship between covariates and the hazard can be estimated without having to
make assumptions about the nature and shape of the baseline hazard rate. However,
some features of the Cox model may cause problems for the analyst or an interpreter
of the data. They include the restrictive assumption of proportional hazards for
covariate effects, and “loss” (non-estimation) of the baseline hazard function induced
by conditioning on event times. A review of survival analysis in cancer journals
reveals that only 5% of all studies using the Cox PH model considered the underline
assumption (Altman et al., 1985). Where PH assumption is not met, it is improper to
use standard Cox PH model as it may entail serious bias and loss of power when
estimating or making inference about the effect of a given prognostic factor on

mortality (Allison 1995).

Compared with Cox Proportional Hazard model, parametric models are different in
the way they exploit the information contained in the data. Parametric models specify
how the hazard varies over time (hazard shape), which may provide insights into and

guidance on how best to compare outcomes (Cleves 2004).

Recently, AFT models as parametric models have attracted considerable attention,

because not only they do not need PH assumption but also thanks to availability of



standard methods such as Maximum Likelihood (ML), parameter estimation and
testing can be done readily (Klien 1997).

When survival time has a specific statistical distribution, the statistical power of
parametric survival models is higher than nonparametric or semi-parametric survival
models. The exponential, Gompertz, Weibull, log-logistic, and lognormal are among
parametric distributions commonly used for studying survival time analysis. Survival
estimates obtained from parametric survival models typically yield plots that are more

consistent with a theoretical survival curve (Kleinbaum 2005).

Parametric accelerated failure time (AFT) models provide an alternative to the PH
model for statistical modelling of survival data (Wei, 1992). Unlike the PH model, the
AFT approach models survival times directly and generates a summary measure that

is interpreted in terms of the survival curve (Hutton and Monaghan, 2002).

Since recently AFT models have not been used very often and the few usage of these
models are found in kidney transplant studies (Saint-Marcoux 2005). Based on our
knowledge, it has not been used to recognize the prognostic factors of under-five

mortality in Malawi so far.

In this study, the model performance of the Cox proportional hazard model was
compared with that of the parametric survival models like Weibull, Gompertz, log-
normal, exponential and Log-logistic models which are used in modelling the
household environmental and social economical determinants of under-five child
mortality in Malawi. The results are expected to assist researchers in child mortality to

get insight into the suitable model to use.



Child survival is a function of availability and access to basic needs to support life at
both individual, household and neighbourhood levels (WHO 2004). Malawi is on
track to achieve the millennium Development Goal (MGD #4) on reducing child
mortality. The 2006 Malawi multiple Indicator Cluster Survey (MICS) showed that
there was a sharp decline in the infant and under-five mortality rates, from 104 and
189 per 1000 live births respectively in 2000 to 72 and 122 in 2006. They attributed
the decline to sustained high coverage of immunisation and vitamin A
supplementation, elimination of neonatal tetanus, malaria control activities, and
increased rates of exclusive breastfeeding and access to safe drinking water. Although
accurate information on cause of death is lacking, the leading cause of under-five
mortality in Malawi is neonatal conditions, pneumonia, diarrhoea, malaria, AIDS and

malnutrition (UNICEF Malawi 2010).

The U.N. report (2006) indicated that, Malawi is faring better than many of its
counterparts in addressing infant mortality despite its existence in the sub-Saharan
Africa which is regarded as the most dangerous place in the world for new born.
According to the 1992, 2000 and 2004 Malawi demographic and Health Surveys,
infant mortality rate has been steadily decline in Malawi from a very high level of 134

in 1992 to 69 in 2006. Though there is this decline, under-five mortality is still high.

Children are exposed to serious health risks from the environmental hazards.
Environmental risk factors are most often neglected and yet they are playing a great
role in threating the lives of under-five children. These environmental factors are
particularly influenced by adverse social and economic conditions, particularly
conflict, poverty and malnutrition. At least 3 million children under the age of five die

each year due to environment-related diseases. Acute respiratory infections annually



kill an estimated 2 million children under the age of five. As much as 60 per cent of
acute respiratory infections worldwide are related to environmental conditions.
Diarrhoeal diseases claim the lives of nearly 1.5 million children every year. Eighty to
90 per cent of these diarrhoea cases are related to environmental conditions, in

particular, contaminated water and inadequate sanitation. (WHO 2010)

Environmental risks to children vary from region to region. Children in many
countries still face the major traditional environmental hazards, including unsafe
water, lack of sanitation and contaminated food, injuries, indoor air pollution and use
of solid fuel, outdoor air pollution and exposure to a myriad of toxic heavy metals,
chemicals and hazardous wastes that may be brought home from work place.
However, other children live in adverse environment that are vastly different from
those of generations ago. In addition to the traditional environmental hazards, due to
rapid changes in economic structures, technologies and demography, new or modern
environmental hazards have appeared or been recognized, such as increased use of
radiation. These may be linked to global challenges such as uncontrolled urbanisation,
industrialisation in developing countries, ecosystem degradation, and the impacts of

climate change (Mutunga, 2004).



1.2Literature review

1.2.1. Causes of Infant Mortality

There are several causes of under-five children deaths. Figure 1shows the major
causes of under-five children deaths. Apart from the one indicated in the chart, there

are some environmental and socio- economic factors that also affect child survival.

These have been highlighted in the following discussions.

Source: World Health Statistics 2011, WHO
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Figure 1Major causes of death in neonates and under five children globally-2008

Mutunga (2004) argues that causes of infant mortality are multi-factorial, especially in
developing countries, where there are great variations between social, economic and
demographical groups of people even inside one country. Thus, in determining infant

mortality one must take into account this diversity.



A three-tier model of causes of child mortality in developing countries was first put
forward by Millard et al. (1989), as cited in Espo (2002) which mentioned three layers
of causes as proximate, intermediate and ultimate. The proximate causes included the
immediate biomedical conditions that result in death and typically involve the
interactions of malnutrition and infection. Many public health programmes have
addressed the proximate causes in an attempt to improve child health, for instance,
through immunization campaigns. The intermediate layer includes child care practices
and other behaviour that increases the exposure of children to causes of death on the
proximate tier. Specific patterns that increase exposure to proximate causes include
breast feeding habits, health-seeking behaviour etc. The ultimate tier encompasses the
broad social, economic, and cultural processes and structures that lead to the
differential distribution of basic necessities like food, shelter, and sanitation. The
ultimate tier thus forms the context of causes located on the other tiers. In developing
countries, mortality rates are influenced by socio-economic, demographic and

environmental variables (Mosley and Chen 1984).

Mortality and its converse indicator, life expectancy are among the most important
measures of well-being and development in poor countries. It is particularly important
to analyse the determinants of child mortality in poor countries such as Malawi since

child mortality has an overwhelming influence on life expectancy.

Several household environmental and socio-economic characteristics make children
more vulnerable to the attack of various diseases. These determinants usually involve
education of the parents, income or wealth situation of the household, access to water

and sanitation services and access to health services. In this study we will specifically



examines how infant and child mortality is related to the household's environmental
and socio-economic characteristics, such as mother's education, source of drinking
water, Type of toilet facility, type of cooking fuels, wealth index, access to

electricity, partner education, area of residence, and Household size.

1.2.2. Models in the analysis of child mortality

Cox PH models the relationship between explanatory variables and time to event. In
the analysis of child mortality, length of time lived or survival time is an important
indicator, so survival models need to be used when modelling child mortality. There
are several models which have been used in the analysis of child mortality where Cox
Proportion hazard model has been used popularly because its form is flexible enough
to allow time-dependent covariates as well as stratification. There are few studies
which have employed parametric models and most of them used Weibull because it
can be presented in both PH and AFT metric hence can be used to estimate both
relative rates and relative extension in survival time (Kelvin J, 2002) and others

choose Weibull without any particular reasons (Mutunga, 2004).

Child mortality has so far been analysed using different models classes. Table 1 gives
different models that have been used in the analysis of child mortality and their
findings. The name of the author, the year of publication, the model used in the
analysis, the data sources and the finding from the study are all included in the table.
From the table, the commonest determinants of child mortality were wealth index,
Mother education, partner education, birth interval, sanitation facility, source of
water, access to electricity, infant immunization, area of residence, maternal age,

multiple birth, and household size.



Low levels of education for the mother or the father, higher mortality rate are
experienced in low income households. The mothers and fathers level of education is
strongly linked to child survival. Higher levels of education attainment are generally
associated with lower mortality rates. Safe source of drinking water has negative
significant effects on child mortality risk. Those household using safe source of water
like tapped water had lower risk of child mortality as compared to those households
using unsafe water like water from the Well. The same applies for sanitation, where in
most cases access to a flush toilet or a ventilated improved pit latrine was associated
with lower mortality rate. Similarly, urban areas have more advantages and therefore
better child survival prospects. The patterns of mortality by maternal age and birth
order were typically U-shaped. Children born to both relatively old and young women
have higher mortality rates than others. In this case the effect of maternal age at birth
on infant mortality rate were biological i.e. it depends on reproductive maturity. Less
child mortality risk were also experienced in children who were immunised. Higher
child survival prospects were found in small households as compared to larger

households.



Table 1 Models in the analysis of under-five child mortality(UV=Univariate and MV=multivariate)

Author

Title(Data sources):Outcome

Model class

Results/Factors associated with increased risk of child
mortality

Mturi A.J. &Curtis
S.L(1995)

Determinants of infant and child
mortality in
Tanzania(1991/92TDHS Data)
Outcome: Hazard ratio

Cox PH Hazard model
(maternal and
socioeconomic factors

Mortality risk at age 1-59 months was significantly associated
with partner’s education and zone of residence. Uneducated
partners faced increased risk of child mortality.

Zerai(1996)

Socio-economic  determinants of
infant mortality in Zimbabwe(1988
ZDHS Data)

Outcome: Hazard ratio

Cox regression model

Women’s average education level in their community exerts a
greater influence on infant survival. Poor survival prospects
are experienced in communities with low women average
education levels.

Manda(1996) Relationship between infant and | Cox regression models | Birth interval and maternal age affects child mortality.
child mortality and maternal factors Children born to both relatively old and young women have
in Malawi (1992 MDHS data) higher mortality rates than others.

Outcome: Hazard ratio
Kembo and | Determinants of infant and under- | MV proportional Birth of order 6+ with short preceding interval had the highest

Ginneken(2009)

five mortality in Zimbabwe (used
2005-06 Zimbabwe DHS data)
Outcome: Hazard ratio

hazard models

risk of infant mortality
Social economic variables did not have a distinct impact on
child mortality

Uthman
&Mubashir(2008)

Maternal determinants of child
mortality in Nigeria(using 2003
Nigeria DHS data)

Outcome: Hazard ratio

UV &MV survival
regression models with
weibull hazard function

Maternal education and household asset index was associated
with lower risk of infant mortality. Multiple births were
strongly negatively associated with lower risk of infant
survival. Children from uneducated mothers and poor
households had increased risk of child mortality.

Mutunga(2007)

Environmental determinants  of
child mortality in Kenya(using 2003
KDHS)

Outcome: Hazard ratio

Cox PH models

(The study used
socioeconomic,
Demographic, and

Environmental
variables)

Children born from youngest mothers and oldest women
experience high risk due to biological factors.

Better survival prospects were found in children born in
wealthier families, household with electricity, household with
access to safe drinking water and sanitation facilities, Those
using less polluting fuels for cooking, and larger households.

0




Table 1 Models in the analysis of child mortality ;UV=Univariate and MV=multivariate (cont.)

Author Title(Data sources):Outcome Model class Results/Factors associated with increased risk of child
mortality
Examining the trend and annual rate of | Log-log specified | Infant immunization was the most significant factor that
Mazbahul G. | reduction in infant from 1998-2007 and | ordinary least square | reduces infant mortality. Access to electricity, household
&Tashina K.(2009) | correlates causal factors based on data | and simultaneous | with electricity had decreases infant mortality rates.
from statistical year book of Bangladesh | quantile regression
2008 and sample vital registration system | models

2007
Outcome: Risk rate

Mojekwu & Joseph
Mnamdi(2012)

Environmental daterminants of child
mortality in Nigeria(2008 NDHS)
Outcome: Risk rate

Principal component
analysis as a data
reduction technique
with Varimax rotation

Better survival prospects were found in home with high
income, household that have access to immunization, those
with sanitation facilities and those using low polluting fuels
as their main source of cooking.

Raheem Usman A.
&Segun-Agboola,
B.T,(2009)

Exploring the social and environmental
determinants of child health in llorin,
Nigeria

Outcome: Risk rate

Multiple logistic
regression model

The study concluded that Health of children was
considered in a typical urban Africa and residential quality
as epitomised by availability of environmental services like
kitchen, bathroom and toilet were more determinant of
child health

Merimaaria V. &
Teija K. (2000)

Antanatal and perinatal predictors of
infant mortality in rural Malawi (used a
cohort of 733 live born infants

Outcome: Relative risk

UV and MV analysis
used to determine
relative risk

HIV epidemic was an important but not the main
determinant of infant mortality. Maternal factors were the
main determinants.

10




Table 1 Models in the analysis of child mortality; UV=Univariate and MV=multivariate (cont.)

Author

Title(Data sources):Outcome

Model class

Results/Factors associated with increased risk
of child mortality

Halaabou-ali(2002)

The effect of water and
sanitation on child mortality in
Egypt(used 1995 DHS data)
Outcome: risk rate

Three part model specification
comprising descrete choice
and transition models

Access to municipal water decreases the risk and
sanitation was found to have a more pronounced
impact on mortality than water

Cornelia K. and

P.(2011)

Ingo

Behavioural factors as emerging

main determinants of child
mortality in middle income
countries: a case study of

Jordan(2007 Jordan DHS data)
Hazard rate: Risk rate

Logit model

(biological, birth order, birth
interval, breastfeeding, access
to drinking water were some of
the variables)

They observed higher mortality rates among
infants and children who lack access to either safe
drinking water or improved facilities.

Andreas J. Sian F.(2006)

Child  mortality in  rural
Malawi(used 2000-2006
demographic surveillance

system data in northern Malawi
Risk rate: Relative risk

Poisson regression models
(variables used are parental
education, maternal factors)

Found loss in the usual gap in survival between
the poor and the less poor because the less poor
have been disproportionately affected by HIV
rather than because of relative improvement in the
survival of the poorest.

Sudhanshu H (2008)

Child mortality in the eastern
and southern Africa (used DHS

for Malawi  (1997-2004),
Mozambique (1997-2003),
Tanzania  (1996-2004) and

Zambia (1992-2001))

MV regression model
(The study used birth size,
breastfeeding status, water
source, and sanitation)

The largest protective factors found were parity,
birth spacing and to a lesser degree household
wealth.

11




1.2.3. Under-five children mortality studies

This section presents in more detail several studies that have been done in finding the

factors that affect child mortality using various statistical methods.

In 1964, Bourgeois-Pichat identified two types of factors ‘endogenous’ and
‘exogenous’ that affect infant mortality. Exogenous factors of infant mortality are
dependent on environment in which an infant is exposed and include deaths to infants
due to infections, parasite and respiratory diseases. Such causes normally occur in the
post-neonatal period (1 to 11 months of age of infant) and they are easier to control.
On the other hand, endogenous causes of mortality are more biological in nature and
include deaths due to congenital malformations and birth process. They occur in the

neonatal period (less than 1 month of age of infant) and are rather difficult to control.

Gandotra and Das (1988) later categorised the underlying factors behind the
immediate causes of infant deaths into five broad groups: demographic factors, socio-
economic factors; environmental, sanitation and hygienic factors; nutrient availability

factors; and medical care factors.

Pandey et.al. (1998) while analysing the NFHS-1 data considered child’s year of
birth, child’s sex, mother’s age at child birth, residence, mother’s literacy, religion-
caste/tribe membership, mothers exposure to mass media, availability of toilet facility,
type of cooking fuel and ownership of goods scores as the covariates of infant

mortality.

The social economic variables that have been used in previous as well as in this study
include parental education levels, type of place of residence (urban/rural), Access to

electricity, wealth status and household size. Socioeconomic variables as well as
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household environmental variables play a major role in determining the survival of a

child.

The 2004 MDHS data indicated that urban mortality rates are generally lower than
rural rates; the under-five mortality rate is 116 per 1,000 in urban areas compared to
164 per 1,000 in rural areas. The MDHS compared the three regions in Malawi, and
the Northern Region was found to have lower under-five mortality (120 per 1,000 live
births), than either the Central (162 per 1,000) or the Southern Regions (164 per
1,000). Similarly, the infant mortality rate was lowest in the Northern Region (82 per
1,000), compared with either the Central Region (90 per 1,000) or the Southern
Regions (98 per 1,000). These regional differences in mortality were also observed in
the 1992 MDHS and the 2000 MDHS. The 2004 MDHS shows a relationship between
mother’s education and child survival as the 2000 MDHS. For every age interval,
higher levels of education are generally strongly associated with lower mortality risks.

The same is true for the wealth index.

Mturi, and Curtis (1995) investigated the determinants of infant and child mortality in
Tanzania using the 1991/92 Tanzania Demographic and Health Survey. A hazards
model was used to assess the relative effect of the variables hypothesized to influence
under-five mortality. The study showed that there was a remarkable lack of infant and
child mortality differentials by socioeconomic subgroups of the population, which
may reflect post-independence health policy and development strategies. Mortality
risk at age 1-59 months was significantly associated, partner's education, and zone of

residence.

Zerai (1996) examined socio-economic and demographic variables in a multi-level

framework to determine conditions influencing infant survival in Zimbabwe. He
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employed Cox regression analysis to the 1988 Zimbabwe DHS data to study
socioeconomic determinants of infant mortality. The unique finding was that
women’s average educational levels in their community exert a greater influence on

infant survival than the mother’s educational level.

Manda (1999) used data from the 1992 DHS in Malawi to study the relationship
between infant and child mortality and birth interval, maternal age at birth and, birth
order, with and without controlling for other relevant explanatory variables. He also
investigated the direct and indirect (through its relationship with birth intervals)
effects of breastfeeding on childhood mortality. The study employed proportional
hazards models. The results show that birth interval and maternal age effects are

largely limited to the period of infancy.

Manda further found that as the child increases in age, the influence of social and
economic variables on the mortality risk is enhanced, and the relationship between
bio-demographic variables and mortality risk is strengthened. The study further shows
that breastfeeding status does not significantly alter the effects of preceding birth
interval length on mortality risk, but does partially diminish the succeeding birth

interval effect.

Kalipeni (1993) in his paper examines the spatial variation of infant mortality in
Malawi between 1977 and 1987. Data from the 1977 and 1987 censuses were used in
simple correlation and forward stepwise regression analysis to explain and/or predict
the variation and change of infant mortality at district (county) level. The results
indicated that, at the macro-level, the variation of infant mortality was strongly
associated with a number of demographic and socioeconomic variables like Age at
first marriage, total fertility rates. Female literacy rates, number of home craft centres
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per 10,000 women and females in agriculture (%) were among the most important
demographic and socioeconomic variables. For example, districts with high levels of
literacy rates and educational facilities had lower rates of infant mortality. Districts
with more females engaged in agriculture had higher levels of infant mortality. As a
result, there are distinct regional differentials due to the inequitable distribution of
educational opportunities, health care facilities, and non-agricultural activities. But
even after controlling for these socioeconomic variables, regional differentials in
infant mortality still persist. They also find that the region in which a district finds

itself also played a role as far as levels of infant mortality were concerned.

Kalipeni (1993) further estimated several multivariate regressions to show how the
relationship between region and child mortality changes when controls for other
factors. To discern how the different variables of interest operate to affect mortality,
the variables were introduced into the regression in stages. The first model only
included dummy variables for the region the mother was living in at the time of the
survey. This establishes regional differentiation of mortality. Due to the vast
differences in educational infrastructure among the three regions, the second model
tested whether the regional differentiation was explained by education. The third
model adds controls for medical and health environment and the final model added

other socioeconomic controls in attempts to explain away the differential.

The results of the bivariate and regression analyses showed some interesting
relationships between the regional variation of child mortality and several of the
variables. Without controls, there was a significant difference in child mortality

between the North and the South, and between the North and the Centre. But not
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between the South and the central controlling for education status, the difference
between the North and the South were insignificant. This suggested that the

differential in child mortality between the two regions is explained by education.

Kembo and Ginneken (2009) used multivariate proportional hazard models to
determine the impact of maternal, socioeconomic and sanitation variables on infant
and under- five child mortality in Zimbabwe. Results showed that births of order 6+
with a short preceding interval had the highest risk of infant mortality. Socioeconomic
variables did not have a distinct impact on infant mortality. Determinants of child

mortality were different in relative importance from those of infant mortality.

Uthman and Mubashir (2008) examined the relationship between multiple births and
infant mortality in Nigeria. They used univariable and multivariable survival
regression procedure with Weibull hazard function, controlling for child's sex, birth
order, prenatal care, delivery assistance; mother's age at child birth, nutritional status,
education level; household living conditions and several other risk factors. Maternal
education and household asset index were associated with lower risk of infant
mortality. They concluded that multiple births are strongly negatively associated with
infant survival in Nigeria independent of other risk factors. Mother's education played
a protective role against infant death. This evidence suggests that improving maternal
education may be a key to improving child survival in Nigeria. A well-educated
mother has a better chance of satisfying important factors that can improve infant
survival: the quality of infant feeding, general care, household sanitation, and

adequate use of preventive and curative health services.
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Mutunga (2007) examined how infant and child mortality is related to the households
environmental and socio-economic characteristics, such as mother’s education, source
of drinking water, sanitation facility, type of cooking fuels, and access to electricity.
A hazard rate framework was used to analyse the determinants of child mortality.
They applied duration models to the problem of child mortality since this class of
models straightforwardly accounts for problems like right-censoring, structural
modelling and time varying covariates which traditional econometric techniques
cannot handle adequately. In this study, Mutunga found that of the demographic
variables, children born of the youngest and oldest women experience high risk rates
of death. All of these are mainly due to biological factors. As for the socio-economic
variables, better survival prospects were found to exist for children born in wealthier
families. Lower mortality rates had also been found in households with electricity.
Household size was negatively related to child mortality, meaning that lower child
survival prospects were experienced in smaller households. Similarly, environmental
characteristics of households were found to be significantly related to child mortality.
Lower mortality rate were experienced in households that have access to safe drinking
water, those with access to sanitation facilities and those using low polluting fuels as

their main source of cooking.

Kazembe and Mpetekula (2010) in their study quantifying spatial disparities in
neonatal mortality used structured additive regression model and found that both fixed
and spatial effects were associated neonatal mortality. The results showed that infants
with birth weight above average (> 2500 grams), born as single tons, born of mothers
who sought antenatal care and those whose mothers were all associated with lower

probability of dying in the neonatal period. The effect of being a boy child, first born,
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born in rural area, and born to mothers who attained primary education was positively

associated with neonatal deaths.

Mazbahul and Tashina (2007) examine the trend and annual rate of reduction in
infant mortality from 1998-2007 time periods and correlates causal factors based on
different data from Statistical Yearbook of Bangladesh 2008 and Sample Vital
Registration System 2007. Seven explanatory variables were considered and the log-
log specified ordinary least square and simultaneous quantile regression models were
employed to investigate and compare the stochastic impacts of these predictors on
changing infant mortality. Infant immunization was the most effective factor that
reduces infant mortality especially at lower quantile districts. Most notably, lower
poverty line implies increasing trend with upper quantile, indicates that districts with
low infant mortality rate has low effect for any positive rate of change of it. The least
square as well as simultaneous quantile regression result disclose that share of
population lived in electricity accessed houses, road density, no. of female per family
planning personnel has potential and statistically significant impacts on infant
mortality rate. Likewise, infant mortality decreased with the increased percentage of

household having television.

Mojekwu and Nnamdi (2012) in their study environmental determinants of child
mortality in Nigeria, used principle component analysis as a data reduction technique
with varimax rotation to assess the underlying structure for sixty-five measured
variables, explaining the covariance relationship amongst the large correlated
variables in a more parsimonious way and simultaneous multiple regression for child

mortality modelling in Nigeria. For purpose of robustness, a model selection
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technique was implemented. Estimation from stepwise regression model showed that
household environmental characteristics do have significant impact on mortality.
Better survival prospects were found to exist in homes with high income. Lower
mortality rates were experienced in household that have access to immunization, those
with sanitation facilities, those with proper refuse and solid waste disposal facilities as
well as those with good healthy roofing and flouring materials and those using low

polluting fuels as their main source of cooking.

Usman. and Agboola (2009) in their paper “exploring the social and environmental
determinants of child health in llorin, Nigeria, used a multiple regression model to
analyse the nature and degree of explanation offered by each of the variables unsafe
drinking water and poor sanitation and hygiene’ mother socio-economic
characteristics. The study found inverse relationship between mother’s socio-
economic characteristics and the health of their children. In this regard, mothers in
informal occupation were shown to possess 23% likelihood of their children falling
sick compared to mothers in other categories of occupation(r =0.48). On the other
hand, children of illiterate mothers had 15.4%likelihood of diarrhoea occurrence than
children of educated mothers (r = 0.39). In households with large family sizes, the
likelihood was higher by 16.9% compared to household with smaller family sizes.
The study concluded that health of children is considered in a typical urban Africa.
The result shows that residential quality as epitomised by availability of
environmental services like kitchen, bathrooms and toilet were more determinant of

child health.
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Omolaubi (1995) had earlier emphasized that children of educated women, especially
if the latter had completed secondary education, have much higher survival chances
than children of illiterate mothers. This is because maternal education works through
three different pathways. It influences the socio-economic level of household, governs
mothers’ attitude and influences her behaviour (including health seeking) on issues

relating to the health of their children.

Vaahtera and Kulmala(2000), in their study of antenatal and perinatal predictors of
infant mortality in rural Malawi used a cohort of 733 live born infant from
approximately 24 gestation weeks onwards. Univariate analysis was used to
determine relative risks for infant mortality after selected antenatal and perinatal
exposures. Multivariate modelling was used to control for potential confounders, The
HIV epidemic was an important but not the main determinant of infant mortality. The
infant mortality rate was 136 deaths/1000 live births. Among singleton newborns, the
strongest antenatal and perinatal predictors of mortality were birth between May and
July, maternal prim parity, birth before 38th gestation week, and maternal HIV
infection. Theoretically, exposure to these variables accounted for 22%, 22%, 17%,

and 15% of the population attributable risk for infant mortality, respectively.

Masangwi (2010) in their study of Behavioural and environmental determinants of
child diarrhoea in Chikwawa Malawi, used a Bayesian logistic regression analysis to
analyse domestic water sources, sanitation and hygiene practice and their impact on
diarrhoea which is also one of the causes of under-five child death. Results showed
that children from households with no toilet facilities were more likely to have

suffered from diarrhoea than those who own such facilities. (Odds ratio: 1.72, 95%
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Cl: 1.18, 2.51). On the other hand, children from households that use private taps
were less likely to have suffered diarrhoea than those that use public taps (OR=0.16,
95% ClI: 0.08, 0.32). Those where each member use a basin (OR=0.37, 95% CI: 0.20,
0.70) or running water from a tap (OR=0.10, 95%CI: 0.02, 0.53) for washing hands
were less likely to have suffered diarrhoea than those that use cups to pour water from

containers.

Sudhanshu and Wen (2008) in their study child mortality in the eastern and southern
Africa, provide an in depth analysis of the micro-level determinants of child survival
in four eastern and southern Africa (ESA) countries over time: Malawi, Mozambique,
Tanzania and Zambia. Two of these countries were thought to have made important
gains in reducing mortality (Malawi and Mozambique), mortality increased in
Tanzania in the late 1990s but then dropped in the early part of this decade, while in
Zambia the pattern of child mortality during the 1990s was unclear. Each of these
countries has two comparable national household surveys (DHS) at least five years
apart which provide a sufficiently long enough window to observe sustained changes
if they occurred. For each country they provided three sets of analyses. First, they
pool the data and estimate survival functions with cohort effects to test whether the
probability of survival has changed significantly over time. They estimated the change
in the relative risk of death over time (the death hazard) as well as statistical tests for
differences over time and by age cohort. Second, they estimated full survival models
by age group to assess whether there are patterns in the main determinants of child
survival across the countries. Finally, they quantify the change in child survival over

the study period that is attributable to each of the variables included in the regression
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model, thus providing a picture of some of the key drivers of mortality changes in the

time period being studied.

Cornelia and Ingo (2011) run different logit estimations to allow for different set of
variables. They concluded that once a country has passed a certain threshold in
household income, education and access to health care and safe drinking water,
policies targeting behavioural changes are the most promising for achieving further
reductions in mortality rates. That is among the household and community
characteristics, they observed higher mortality rates among infants and children who

lack access to either safe drinking water or improved facilities.

Abou-ali (2002) assessed water and sanitation’s impacts on child mortality in Egypt.
The analysis was conducted using a three-part model specification, comprising
discrete choice to model the child prospects of dying during the neonatal period. The
remaining parts uses transition models to model infant and childhood risk of death
where unobserved heterogeneity is accounted for. The results show that access to
municipal water decreases the risk and sanitation is found to have a more pronounced
impact on mortality than water. The results suggest that increasing awareness of the
Egyptian population relative to health care and hygiene is an important feature to
decrease child’s mortality risk. Moreover, gender discrimination is found to be of an

important effect beyond the neonatal period.

Jahn etal (2010) in their study Child Mortality in rural Malawi, as part of a
demographic surveillance system in northern Malawi in 2002-6, covering a

population of 32,000, information was collected on socio-economic status of the
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households. Deaths were classified as HIV/AIDS-related or not by verbal autopsy.
Poisson regression models were used to assess the association of socio-economic
indicators with all-cause mortality, AIDS-mortality and non-AIDS mortality among
children. There were 195 deaths in infants, 109 in children aged 1-4 years, and 38 in
children aged 5-15. All-cause child mortality in infants and 1-4 year olds was similar
in households with higher and lower socio-economic status. In infants 13% of deaths
were attributed to AIDS, and there were no clear trends with socio-economic status
for AIDS or non-AIDS causes. For 1-4 year olds 27% of deaths were attributed to
AIDS. AIDS mortality was higher among those with better built houses, and lowest in
those with income from farming and fishing, whereas non-AIDS mortality was higher
in those with worse built houses, lowest in those with income from employment, and
decreased with increasing household assets. They concluded that in this population,
since HIV infection among adults was initially more common among the less poor,
childhood mortality patterns have changed. The usual gap in survival between the
poor and the less poor has been lost, but because the less poor have been
disproportionately affected by HIV, rather than because of relative improvement in

the survival of the poorest.

Mohamad and Ebrahim (2007) compared two survival regression methods — Cox
regression and parametric models - in patients with gastric adenocarcinomas who
registered at Taleghani hospital. They retrospectively studied 746 cases from February
2003 through January 2007. Gender, age at diagnosis, family history of cancer, tumor
size and pathologic distant of metastasis were selected as potential prognostic factors
and entered into the parametric and semi parametric models. Weibull, exponential
and lognormal regression were performed as parametric models with the Akaike

Information Criterion (AIC) and standardized of parameter estimates to compare the
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efficiency of models. The survival results from both Cox and Parametric models
showed that patients who were older than 45 years at diagnosis had an increased risk
for death, followed by greater tumor size and presence of pathologic distant
metastasis. In multivariate analysis Cox and Exponential were similar. Although it
seems that there may not be a single model that is substantially better than others, in
univariate analysis the data strongly supported the log normal regression among
parametric models and they concluded that it can be lead to more precise results as an

alternative to Cox.

Kourosh and Mohammad (2008) evaluated the prognostic factors of overall survival
after haematopoietic stem cell transplant in acute lymphoblastic leukaemia patients
using accelerated failure time (AFT), Cox proportional hazard (PH) and Cox time
varying coefficient model. In this study, the predicted power of weibull AFT models
was superior to Cox PH model and Cox with time varying coefficients. Cox-Snell
residual show weibull AFT fitted to data better than the other distributions in
multivariate analysis and they concluded that AFT distribution can be useful tool for

recognising prognostic factors of overall survival.

From the review of the literature above, it is clear that there are few studies that used
parametric survival models in determining infant and child mortality in Malawi as
well as other countries. It is against this background that in this study different
parametric models have been used and their performance been compared in order to
find the best fitted model used in determining factors that affect child survival. Our
results will offer an in-depth use of DHS data and are expected to improve the

understanding of the mortality situation of under-five children in Malawi. Since the
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best model has been established, we expect the results to be more accurate, thereby be
of interest to people working on other studies that analyse child mortality risks in

Malawi.

1.3 Problem Statement

Malawi infant and under-five mortality is still high though there is evidence of a sharp
decline in the infant and under-five mortality (2006 MICS survey). Accurate
information on cause of death is lacking, what is mostly known is that the leading
cause of under-five mortality in Malawi is neonatal conditions, pneumonia, diarrhoea,
malaria, AIDS and malnutrition (UNICEF Malawi 2010). As such, many studies on
child mortality have concentrated on disease as the main cause of child mortality. If
under-five mortality has to be reduced, there is a great need to find all other factors
that may cause under-five mortality. This will guide as to which interventions to focus

on in order to reduce child mortality.

Similarly most child survival studies have employed Cox proportional hazard model.
If we have to come up with effective and efficient results which can guide policy,
there is a great need to identify the suitable model which can be used in the analysis
of child mortality. Hence, the need to compare the performance of Cox PH model and

parametric models.

1.4  Objectives of the study

1.4.1 Broad Objective
The general aim of the study was to compare the performance of Cox Proportional

hazard model and parametric models like exponential, Weibull, Gompertz, Log-

logistic, and log-normal model in modelling child mortality
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1.4.2 Specific objectives

1. To identify social economic and household environmental factors that
influence under-five child mortality using Cox proportion hazard model.
2. To Identify the best fitting model between parametric and semi parametric
and among the parametric models.
3. To identify social economic and household environmental factors that
influence under-five child mortality using five parametric survival models
1.5 Justification of the study
Since children are basic for every development aspect of a country there is a need to:
identify the best model that determines factors that affect under-five mortality.
Although the Cox parameter estimations are well known to the researchers in the field
of medical sciences, the results in accelerated failure times can be interpreted as the
relative risk that is known to medical scientists. Thus, these parameters can be
interpreted as factors accelerating or decelerating similarly in the interpretation of

cox’ hazard ratio.

This study is expected to contribute to methodological innovation in infant and child
mortality studies in Malawi by introducing parametric survival analysis into child
mortality modelling. Survival models are the most suited for such analysis because
they account for problems like right-censoring, and structural modelling which

traditional econometric techniques cannot handle adequately (Mutunga 2004).
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The results of this study are expected to shed light on the linkage between the
household’s environmental status and child mortality, and consequently inform policy
on the importance of improving households’ environmental and socio-economic
characteristics in a bid to reduce child mortality. This is in line with the current
government’s effort of mainstreaming the environment into sustainable development

planning and commitment to the achievement of the Millennium Development Goals

1.6. Definitions of terms

o Neonatal mortality : the rate of dying within the first month of life

e Infant mortality : The rate of dying between births and the first birthday

e Child mortality: The rate of dying between exact ages one and five

e Under-five mortality: rate of dying between birth and the fifth birthday

e Wealth index: proxy measure of the wealth of households which is based on
household characteristics, ownership of assets (house ownership, source of
drinking water, electricity, sanitation facility (toilet), floor material type, roof
material type etc.)

e Household: This is a social group of one or more individual members. They

are usually but not always related.
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Chapter 2: Methods and Data sources

2.1. Data

The analysis of child mortality used data from the 2010 Malawi Demographic and
Health survey (MDHS). The 2010 Malawi Demographic Health Survey (2010
MDHS) was implemented by the National Statistical Office (NSO) and the

community Health Sciences Unit (CHSU) from June through November 2010.

2.1.1 Sample design

The 2010 MDHS sample included 849 clusters: 158 in urban areas and 691 in rural
areas. A complete listing of households was done in each of the MDHS clusters from
May to June 2009. A minimum sample size of 950 households was required per
district to provide an acceptable level of precision for the indicators measured in the
survey. The survey interviewed a representative sample of 19,967 women aged
between 15 and 49 years. A two stage stratified sampling design was implemented to
collect the data. The data were realized through a questionnaire that included
questions on marriage and reproductive histories of which histories of all birth they
ever had, area of residence, age of the mother, type of sanitation facilities, whether the
child is alive or not, age at death and many more were gathered (Appendix 3 shows
the relevant pages of the questionnaire used in this study). Survival time of each child
was computed in months, all children whose survival time was less than 60 months

were classified as under-five deaths. All children above 60 months were censored.

2.1.2. Limitations
The Data collected using the birth histories in the 2010 MDHS were subject to a

number of potential errors. First, the data reflect only surviving women age 15-49

years; no data were available for children of women who died. To the extent that child
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mortality of surviving and non-surviving women differs substantially and that young
children of non-surviving women make up a good portion of all young children, the

mortality indicators derived from the birth history would be biased.

Another possible error is underreporting of events; respondents may forget events that
occurred in the more remote past. Omission of infants’ deaths may take place,
especially in cases where deaths occur early in infancy. There was also a potential of
forgetting the death of neonates and of those who had born recently due to cultural
emotional response which does not regard the young baby as having lived. If such
deaths are selectively reported, consequences will not only be a lower infant mortality
rate (IMR) and neonatal mortality rate (NNMR), but also a low ratio of neonatal
deaths to infant deaths. On the other hand, mis- reporting of the date of birth and age
at death would sometimes result in distortion of the age pattern of death. This may
affect the final indices obtained because of shifting of ages above or below the cut-
offs for the different mortality categories. Another aspect that affects the childhood
mortality estimates is the quality of reporting of age at death. Here they just reported
the age and not month and year or exact date when the child died. To minimise errors
in the reporting of age at death, the interviewers were instructed to record the age at
death in days if the death took place within one month after birth, in months if the
child died within 24 months, and in years if the child was two years or older. In
general if ages at death are misreported, it may bias the estimates, especially if the net
effect of age misreporting results in transference of deaths from one age bracket to

another. For the purpose of the analysis, the age at death were imputed into months.
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2.2. Variables considered
Mosley and Chen (1984) were among the first to study the intermediate biomedical

factors affecting child mortality, labelled ‘proximate determinants’ They
distinguished fourteen proximate determinants and categorized them into four groups:
maternal [fertility] factors, environmental sanitation factors, availability of nutrients

to the foetus and infant, injuries, and personal illness control factors.

Independent variables
Based on the Mosley and Chen (1984) determinants of under-five child mortality

framework, the independent variables that were studied in this research were:
Socioeconomic variables: (mother education, Father Education, wealth index, area of
residence, household size and Access to electricity)

Household environmental /Sanitation variables: (source of drinking water, toilet

facility and source of cooking fuel).

The Response Variable

The dependent variable that was used in this study is child survival time, which was
measured as the duration in months starting from birth to death (if event occurred) or

from birth to the survey date (censored data).

2.2.1 Measurement of variables

Wealth index was calculated by the MDHS on the basis of ownership of household
assets. Wealth index had five categories, which are richest, rich, medium, poor and

poorest. The poor status category was used as the reference category.

30



Mother and partner education, had four categories; no education, primary education,
secondary education and higher education. In this analysis those with no education
and with primary education were put in one category and secondary and higher
education were also recoded in one category. This was done to balance the sample

size as we have highest education with smallest sample size.

In this study, households that have either a flush toilet or a pit latrine, whether private
or shared are regarded as having sanitation as opposed to those without any facility.
Similarly, households with access to private or public tap water, as well as covered

well water are considered to have safe water.

Avrea of residence had two categories; rural and urban. Similarly, access to electricity
had two categories those with electricity and those without. Using electricity and
different kinds of gas were considered as using less polluting fuel. On the other hand
those using wood, charcoal were regarded as using high polluting source of fuels for
cooking. The categorical predictor household size had four levels; households with
two to three members, household with four to five members, household with six to
seven members and household with eight or more members. And household with two
to three members was used as a reference category. The variables and codes used in

the analysis of this study are provided in the Table 2 below.
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Table 2variable description and codes for categories

Variable | Description Codes/Values for categories
V025 Type of place of 0= urban*, 1= rural
Residence
highedu | Mother education 0 = no or primary education*, 1= secondary or
Higher
Fuel Type of cooking fuel O=Electricity or gas*, 1=firewood or charcoal
partedu | Partner education 0 = no or primary education*, 1= secondary or
Higher
Water2 | Source of drinking | O= piped water*, 1=Well water
water
Toiletl | Type of toilet facility | 0= flush or pit latrine*, 1=no toilet facility
Hsize Household size 0= 2 to 3 members* 1= 4 to 5 members,
2= 6 to 7 members, 3=8 to 23 members
Status Wealth index 0 = poor 1= poor* 2 = medium 3 = rich 4 =
richest
elect Access to electricity 0= No*, 1= yes

Note: * were used as the reference categories)

2.3 Theoretical Model

This section describes the statistical models that were used, and have been

implemented elsewhere, to study infant and child mortality. Section 2.3.1 is dedicated

to distributional properties of time-to-event data and discusses the concept of survival

and hazard function. Section 2.3.3 and 2.3.4 discuss the Cox PH and parametric

approaches, respectively, to modelling the relationship between child mortality and

the covariate identified.

This study employed survival analysis. Survival models relate the time that passes

before some event occurs to one or more covariates that may be associated with that

quantity. The main concepts of which are the hazard function and the survivor
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function. The underlying hazard function, often denoted h,(t), described how the
hazard (risk) changes over time at baseline levels of covariates; and the effect
parameters, describing how the hazard varies in response to explanatory covariates.
The hazard rate (the term was first used by Barlow (1963) is defined as the probability
per time unit that a case that has survived to the beginning of the respective interval
will fail in that interval. Specifically, it is computed as the number of failures per time
units in the respective interval, divided by the average number of surviving cases at

the mid-point of the interval (Kay R, 2004).
2.3.1 Survival time distribution

Let T be a random variable denoting the survival time. The distribution of survival
times is characterized by any of three functions: the survival function, the probability

density function or the hazard function.

The survival function defined as the probability that the survival time is greater or

equal to t.
S@E)=P(T<t),t=0 21)

The failure function F (t) is given as

F@=prr <0 = [ fdx 22)
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where t is the elapsed time since entry into the study (child was born) at time 0 and

f(.) is the probability density function of T.

Thus, we can express the survival function in terms of the failure function as

S@)=pr(T>t)=1-F(t) (2.3)

The survivor function S(t)and the failure function F(t) are each probability, and
therefore inherit the properties of probabilities. The survivor function lies between
zero and one, and is a non-increasing function of t. The survivor function is equal to

one at the start of the spell (¢t =0)

and is zero at infinity.

Closely related is the concept of hazard rate, which is given as:

Pr(tsTst+8t|T>t) _ f(t) _ M
5t T1-F@t)  S@)"

h(t) = limg.o (24)

There is a one-to-one relationship between a specification for the hazard rate and the

survivor function, which after some manipulation is given as:

5(¢) = exp[—H(?)] (25)

Where

H(t) = f; h(u)du = In[s(t) > 0

H(t) is referred to as the cumulative hazard function or integrated hazard function.
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The important result is that, whatever functional form is chosen for (t) one can derive

S(t) from it (and also f(t) and h(t) ) and vice versa.

2.3.2 Ordinary least squares

Ordinary least squares are used in survival data analysis. However, they cannot handle
censoring/and truncation, time varying covariates and structural modeling (Stephen

2005).

To illustrate the (right) censoring issue, let us suppose that the “true” model is such
that there is a single explanatory variable, Xi for each individual =1, ...,n, who has
a true survival time of T;". In addition, in the population, a higher X is associated with
a shorter survival time. In the sample, we observe Ti where Ti = T;* for observations
with completed spells, and Ti < T;* for right censored observations.
Suppose too that the incidence of censoring is higher at longer survival times relative
to shorter survival times. (This does not necessarily conflict with the assumption of
independence of the censoring and survival processes .it simply reflects the passage of
time. The longer the observation period, the greater the proportions of spells for
which events are observed.)
By OLS, we mean: regress Tti, or better still log Ti (noting that survival times are all
non-negative and distributions of survival times are typically skewed), on Xi, fitting
the linear relationship

log(T;) = a + bx; + ¢;
The OLS parameter estimates are the solution tomin, ;, X7 ,(e;). @ is the vertical

intercept; b is the slope of the least squares line.
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2.3.3. The Kaplan-Meier estimate of the survival function

The Life table is the earliest statistical method to study human mortality rigorously,
but its importance has been reduced by the modern methods, like the Kaplan-Meier
(K-M) method. The K-M estimator for the survival curves is usually used to analyse

individual data, whereas the life table method applies to grouped data.
Suppose that r individuals have failures in a group of individuals.
LetO< - <ty <o

be the observed ordered death times. Let 7; be the size of the risk set at ¢; where risk

set denotes the collection of individuals alive and uncensored just before t; ,
Let d; be the number of observed deathsat ¢; j =1,...7

Then the K-M estimator of s(¢) is defined by

A d:
S@) = Hj:t]-<t1 - r_]

J

This estimator is a step function that changes values only at the time of each death.

2.3.4. The Cox proportional Hazards model

The Cox proportional hazard model is given by:

h(tlx) = ho(£)exp(Bixy + Boxy + -+ Byx, = ho(t)exp(B’,) (2.6)
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Where h,(t) is called the baseline hazard function, which is the hazard function for an
individual for whom all the variables included in the model are zero. X = x; x, ..., x,,

is the value of the vector of explanatory variables for a particular individual, and

p' = (B1,B2, ... :ﬁp)

is the vector of regression coefficients.

The corresponding survival functions are related as follows:
S(t}x)=S, (£)*P iy Bixd) 2.7)

This model, also known as the Cox regression model, makes no assumptions about
the form of hy(t) (non-parametric model) but assumes parametric form for the effect
of the predictors on the hazard (parametric part of model). The model is therefore
referred to as a semi-parametric model. The beauty of the Cox approach is that this
vagueness creates no problems for estimation. Even though the baseline hazard is not
specified, we can still get a good estimate for regression coefficients 3, hazard ratios,

and adjusted hazard curves.

The measure of effect is called hazard ratio. The hazard ratio of two individuals with

different covariates x and x* is

T _hotexp('x) _
HR =220 —oxp(Tp (x — ") 28)

This hazard ratio assumes that covariate effects act proportionally on the baseline
hazard function (the values of the functions when all covariates are set to 0),
independent of time. This is why this model is called the proportional hazards model.

The proportional hazard means that the risk of death at any given time for an
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individual in one group is proportional to the risk at that time for similar individual in

the other group.

2.3.5 Partial likelihood estimate foe Cox proportional hazards model

Fitting the Cox proportional hazards model, we wish to estimate h,(t) andS. One
approach

is to attempt to maximize the likelihood function for the observed data simultaneously
with respect to h,(t) and 5. A more popular approach is proposed by Cox [13] in
which a partial likelihood function that does not depend on h,(t) is obtained for 3.
Partial likelihood is a technique developed to make inference about the regression
parameters in the presence of nuisance parameters (h,(t) in the Cox PH model). In
this section, we will construct the partial likelihood function based on the proportional

hazards model.

Let t,,t,,... t, bethe observed survival time for n individuals. Let the ordered death

time of r individuals be t(;) < () < -+ < t¢y and let R(¢(;y) be the risk set just
before ¢(;, and r; for its size. So that R(t ;) is the group of individuals who are alive

and uncensored

at a time just prior to t(;y. The conditional probability that the /th individual dies at
t(;) given that one individual from the risk set on R(t(]-)) dies at t(j) is

P(individual i dies at t(j) | one death from the risk set R(t(j)) at t(j))

_ p(individual i dies at (¢;y)
~ p(Onedeath at t(;)

_ p(individual i dies at £(;))
B Yker(y P(individual k dies at ¢ ;)
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_ P{individual K dies at (t(;), t; + At)}/At
~ Tker(ty Plindividual k dies at () t(;) + At)}/At

lim P{individual i dies at (t(;) () + At)}/At

lim Y er(e,y) P{individual k dies at (t(;) t(;) + At)} /At

_ @)
Yiker(tgy Me(t(p)

_ ho(teiy)exp(B'xi (L)
Lker(ey) ho(t())exp(B X (t()

_exp@'x(t))
ZKGR(T.‘(]') eXp(B,xk(t(]))

Then the partial likelihood function for the Cox PH model is given by

L(8) = 1—[2 exp(B'xi(t(;)) 2.9)
=1 Ke

R(t(]') eXp(B,xk (t(]))

In which x;(t(;) is the vector of covariate values for individual i who dies at t;),
Note that this likelihood function is only for the uncensored individuals. The partial
likelihood is valid when there are no ties in the dataset. That means there is no two

subjects who have the same event time.

2.4 Parametric PH models

The parametric proportional hazards model is the parametric versions of the Cox
proportional hazards model. It is given with the similar form to the Cox PH models.
The hazard function at time t for a particular individual with a set of p covariates

X1X, ..., Xp IS given as follows:
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H(tlx) = ho(t)exp(Bxy + Baxz + -+ Bpx, = ho(t) eXp(ﬁ'x) (2.10)

The key difference between the two kinds of models is that the baseline hazard
function is assumed to follow a specific distribution when a fully parametric PH
model is fitted to the data, whereas the Cox model has no such constraint. The
coefficients are estimated by partial likelihood in Cox model but maximum likelihood

in parametric PH model.

Partial likelihood differs from maximum likelihood because it does not use the
likelihoods for all subjects, it only considers likelihoods for subjects that experience

the event and it considers subjects as part of the risk set until they are censored

Other than this the two types of models are equivalent. Hazard ratios have the same
interpretation and proportionality of hazard is still assumed. A number of different
parametric PH models may be derived by choosing different hazard functions. The

commonly applied models are exponential, Weibull or Gompertz model.

2.4.1 Weibull PH model

The generalization of the exponential distribution to include the shape parameter is
the Weibull distribution. The cumulative distribution function of the Weibull

distribution is

F(t)=1—exp{-6t"},t >0 (2.11)
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where @ is the shape parameter and vy is the scale parameter, and the probability
density

function of the Weibull distribution is

f(t) =y0t" Lexp{-0t’},t >0 (2.12)

The survival function and hazard function of the Weibull distribution are

s(t) = exp{—0t7},

h(t) = yotr—1
respectively
It is easy to see just how flexible the Weibull distribution can be. When y=1, the
Weibull distribution becomes the exponential distribution with 6 = A and the hazard
rate remains constant as time increases, For 3 < y < 4, it is close to the normal
distribution and when v is large, say y > 10 it is close to the smallest extreme value
distribution (Nelson, 1982). When y > 1 the hazard rate increases as time increases,
and for y < 1 the hazard rate decreases. Under the weibull PH model, the hazard

function of a particular individual with covariates (X1, X2, ...,Xp) IS given by:

h(tlx) = 6 y(t)"'exp(Bixy + BoX + Bpx,) =
Oy ()Y exp(B'x). (2.13)

In this case, the survival time of this child has the weibull distribution with shape
parameter 6 exp(f3'x) and scale parameter y. Therefore the weibull family with fixed y
possesses PH property. This shows that the effects of the explanatory variables in the

model alter the scale parameter of the distribution, while the shape parameter remains
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constant. The Weibull model nests the exponential model. We used the Weibull

model to test if the exponential model is appropriate.

2.4.2 Exponential PH model
The exponential PH model is a special case of the weibull model when y=1. The
hazard function under this model is to assume that it is constant over time. This implies
that the conditional “probability’ that a child with covariate values x; dies given that the
child survived to the beginning of the interval is constant over time (and that events occur
according to a Poisson process). In other words, the risk of an event occurring (child
dying due to environmental factors) is flat with respect to time assuming an exponential
distribution for survival time, the hazard function is actually constant. Modelling the
dependency of the hazard rate on covariates entails constructing a model that ensures
a non-negative hazard rate (or non-negative expected duration time). The exponential
density function is

f(t) = dexp(—At) forA >0 (2.14)

andt>0

It has a constant hazard
h(t) =2

and its survival function is

s(t) = exp(—At)
Thus, a large A implies a high risk and a short survival. Conversely, a small A
indicates a low risk and a long survival. This distribution has the memoryless property
meaning that how long an individual has survived does not affect its future survival

(Lee, 1992).The exponential distribution is limited in applicability because it has only
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one parameter, the scale parameter A. By adding a shape parameter the distribution

becomes more flexible and can fit more kinds of data.

The exponential model is the simplest of the parametric survival models because it

assumes that the baseline hazard is constant, (Lawless, 2003).

h(t]x;) = ho(t) exp(x;Bx) (2.15)
= exp(Bo exp(x;By))

=exp(Bo + x;fx)

For some constant f3, , the notation 8, has been used to emphasize that the constant
may also be thought of as an intercept term from the linear predictor. Using the well-

known relationships for the exponential model,

H(tlx;) = exp(By + X;By)t (2.16)

S(tlx;) = exp{—exp(Bo + x;Bx)t} (2.17)

Therefore, under the exponential PH model, the hazard function of a particular child
is given by:

h(tlx) = A exp(B, Xy + B,Xo + -+ + Bpxp =Alexp (B'x) (2.18)
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3.4.2.1Maximum likelihood estimator

Here we are interested in fitting a model to the data. We will use the MLE to find the
most likely parameters of our model. In this Section, we show how to fit the
exponential model to the data.

The parameter that we want to estimate is 8 = (B80,81) € R?. We first need to find
the log-likelihood function:

1 ( —t
ex
exp(Bo + P1x; P exp(fo + P1x;

f(t) = ) t>0, i=1,..,n

So

n n ti
o ) = Iog(L_l[ £ = ;Hﬁo B s e T )

We will see that there is a special case in solving the partial derivatives equations
which gives a closed form, and there is no closed form in the general case

Aspecialcase: 5; = 0

If we assume that 3, is fixed to 0, there is a closed form for 3y, given by:

n n

dl t _ ti — —
2 =0 D oy = Z exp(y " Fo =100

i=1

Generalcase: 5, # O

In order to find the maximum of the log-likelihood function, we try to set the partial
derivatives to 0:

dal . . - y #
i (B)=0 . n¥ ; exp(Bo + Brx:) _
dl .. - N
(B =0 Y x=0
ap, ; exp(Bo + B1x:) ; E

We note that we have no closed form for the solution of the system of equations.
Hence, an iterative method to find the solution can be used. We propose Newton’s

method. For more information (see Davison 2006).

44



2.4.3 Gompertz PH model

The Gompertz model is available only in PH metric and assumes a baseline hazard
ho(t) = exp(6t) exp(By) (2.19)

So that the PH model

ard
h(t|x;) = ho(t) exp(x;5y) (2.20)

= exp(6t) exp(Bo + x;Bx)

The survival and hazard function of the Gompertz distribution are given by

s(t) = exp (g a- eet)), h(t) = Aexp(6t), (2.21)

For O<t<co and A>0. The parameter © determines the shape of the hazard function.
When ©6=0, the survival time then have an exponential distribution, i.e. the
exponential distribution is also a special case of the Gompertz distribution. Like the
weibull hazard function, the Gompertz hazard increases or decreases monotonically.

For the Gompertz distribution, log (h(t)) is linear with t.

Under the Gompertz PH model, the hazard function of a particular child is given
h(tlx) = Aexp(6t) exp(B Xy + B,Xp + -+ Bpxp = Aexp (B’x) exp(ot) (2.22)

It is straightforward to see that the Gompertz distribution has the PH property. But the

Gompertz PH model is rarely used in practice.

2.5 Accelerated Failure Time model (AFT )
Although parametric PH models are very applicable to analyse survival data, there are

relatively few probability distribution for the survival time that can be used with these
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models. In these situations, the accelerated failure time model (AFT) is an alternative
to the PH model for the analysis of survival time data. Under AFT models, we
measure the direct effect of the explanatory variable on the survival time instead of
hazard, as we do in the PH model. This characteristic allows for easier interpretation
of the results because the parameters measure the effect of the correspondent
covariate on the mean survival time. Currently, the AFT model is not commonly used
for the analysis of clinical trial data, although it is fairly common in the field of
manufacturing. Similar to PH model, the AFT model describes the relationship

between survival probabilities and a set of covariates.

The members of the AFT model class include the exponential AFT model, Weibull

AFT model, log-logistic AFT model, log-normal AFT model and gamma AFT model.

Accelerated failure-time models, also known as accelerated—time models or In(time)

models, follow the parameterization

In(t;) = x;Bx +€; € ~ 0ddly, but not odd given the context

In this case g, are the coefficients on x and €; is the error term.

The word *“accelerated” is used in describing these models because rather than
assuming that failure ¢; is exponential, Weibull, or some other form- a distribution is
instead assumed for

Tj=eXp(—x;Bx)¢
and exp(—x;B,) is called the accelerated parameter. If exp(—x;8,) = 1,then 1; =t¢;,
and time passes its “normal” rate. If exp(—x;B,) > 1, then time passes more quickly
for the subject (time is accelerated), so failure would be expected to occur sooner. If

exp(—x;B,) < 1, then time passes more slowly for the subject (time is decelerated), so
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failure would be expected to occur later. The random quantity In(z;) has a distribution
determined by what Is assumed about the distribution of z;, and in the usual
nomenclature of these models, it is the distribution of t; that is specified(Cleves,

2010).

2.5.1 Log-Logistic model

One limitation of the Weibull hazard function is that it is a monotonic function of
time. However, the hazard function can change direction in some situations. The log-
logistic distribution is an accelerated failure time model and has a hazard function
which can be non-monotonic with respect to time, but if k>1 the hazard has a single
mode whereby there is initially an increasing hazard followed by a decreasing hazard.

The log-logistic survival and hazard function are given by

s(t) = {1 + e®tk}?, (2.23)

eOktk1
h(t)=—-— for0<t<oo,k>0 (2.24)

1+e0tk

Where 6and k are unknown parameters and k>0. When k<1, the hazard rate decreases
monotonically and when k>1, it increases from zero to a maximum and then

decreases to zero.

In the AFT metric,
7; = exp(—x8x) t;,
;~loglogistic (8o, v)

7; Is distributed as loglogistic with parameters (B,,y) with cumulative distribution
function

-1

F)=1-[1 +{exp(—ﬁo)r}%] (2.25)
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Thus
In(t;) = x;Bx + In(z})
= Po + x;Bx + u;

Where u; follows a logistic distribution with mean 0 and standard deviation
wy
/\/3 . As aresult,

E{In(tj) |xj} = Bo + x;Px
We can also derive the AFT formulation by accelerating the effect of time on survival
experience. At baseline values of the covariates X, T; = t; because all covariates are

equal to zero. Thus the baseline survivor function of ¢; is obtained from (2.24) to be

1 -1
So(t;) =1+ [1 +{exp(—B,) tj}Y]
In the AFT model, the effect of the covariates is to accelerate time by a factor of

exp(—x;Bx). Thus for the AFT model,

S(t] |x]) = SO{eXp(—x]ﬁx) t]}

1
= [1+ {exp(—Bo) exp(—x;B) t; 1 7*
1

= [1 +{exp(—Bo — x;Bx) t; P11
The log logistic distribution closely resembles the lognormal distribution. Like log-
normal model, the log logistic model has no natural PH interpretation. One advantage
of the log-logistic model over the lognormal model is that the log logistic model has
simpler mathematic expressions of the hazard and survivor function. If y < 1, the log
logistic hazard increases and then decreases. If y > 1, then the hazard is monotone

decreasing.
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2.5.2 Log-normal model
This model has no PH interpretation. As such it is interpreted in the AFT metric

(Cleves, 2010). For the lognormal regression model, it is assumed that

tj~lognormal (8o, o)

7; is distributed as Lognormal with parameters (8,, o) with cumulative distribution
functions

=0 (%)

where ¢() is the cumulative distribution function for the standard Gaussian (normal)
distribution. Thus

In(t;) = x;B, + In(z)) (2.26)

=Bo + xj Py + u;
where u; follows a standard normal distribution with mean 0 and standard deviation o.
That is, for the lognormal model, transforming time into In(time) converts the

problem into simple linear regression(with possible censoring). As a result,
E{In(t;) |%;} = Bo + x;Bx (2.27)

We can also derive the AFT formulation by accelerating the effect of time on survival
experience at baseline, where all covariates are equal to zero. Thus the baseline

survivor function of ¢; is obtained as

So(ty) =1 - (L2 (2.28)

The attractive feature (for some problems) of this distribution is that the hazard

function is non-monotonic in that it increases and then decreases.
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2.6. Time dependence properties of the hazard function

The hazard rate is the probability of experiencing an event at time t;. The precise
shape of the hazard rate-the way it changes with time- is likely to vary from one
situation to the next. For example, the hazard rate might increase with time in some

situations:

@
dt

This means that the risk of an event occurring (child dying) increases with time. This
type of situation exhibits what is often referred to as positive duration dependence.

The hazard rate might decrease with time in other situations:

dh(t)
dt

<0

This means that the risk of an event occurring (child dying) decreases with time. This
type of situation exhibits what is often referred to as negative duration dependence.

The hazard rate might be constant across time in still other situations:

dh(t) _
ac 0

This means that the risk of an event occurring is constant over time. There are also
other situations with more complicated hazards rates that increase and decrease over
time or that increase or decrease at faster or slower rates. Exactly how the hazard rate

varies with time is generally referred to as time dependency.

The main property of parametric survival models is that they assume a particular
shape for the hazard rate. For example, the exponential assumes a flat hazard, the

weibull assumes a monotonic hazard; the log-normal and log-logistic assume a non-
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monotonic hazard. If the characterisation of the underlying time-dependency is
accurate, the particular distributional function is picked then parameter estimates will
generally be more precise than estimates from semi-parametric and nonparametric
models where the underlying time dependency is left unspecified. So, there can be
advantages to using parametric models. That is it is more informative, predicted
hazard functions, predicted survival functions and median survival times can be
obtained. The effect of covariates is to accelerate or delay the duration of illness by a
constant amount (acceleration factor or time ratio), the effect size is time ratio which
is easier to interpret and more relevant to clinician. Problems arise in such a way that
the AFT assumption must hold and also there is a need to specify the distribution of

the survival time, but an appropriate distribution may be difficult to identify.

2.7 Frailty models

Studies on determinants of child mortality have mainly used either logistic regression
or Cox proportional hazards model assuming that the outcomes are independent. To
find more accurate estimates for the determinants of child mortality that has critical
implications for resource allocation for improving child survival, sibling structures in
child mortality data from demographic surveys have been treated as multivariate
failure time data (Guo 1993). As failure time data, many attempts have been made to
extend the Cox proportional hazards model. In this context, the variance-corrected
Cox model has received much attention (Spiekerman 1998). In the variance-corrected
Cox model, regression parameters of the determinants are estimated by ignoring intra-
family correlation but adjusted for in the inference procedure; however, it ignores the
variation of underlying risk among families. To overcome this, multivariate failure

time data are modelled by an unobserved random quantity called frailties (Vaupel
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1979). These frailties are common to observations from the same cluster and assumed
to follow a given statistical distribution, known as multivariate random effects model

or Cox frailty model.

In Malawi, studies on child mortality have mainly addressed the role of maternal,
socioeconomic and health-related determinants. These studies were restricted to the
analysis of mortality risks in children at individual level and not considered the
correlation among children of the same family. There is need to emphasize those
determinants which are nearer in time to the outcome and can be modified by program
than those which are remote or far apart in time to the outcome of concern. The
former covariates are referred to as programmable determinants and the latter as
background variables. Therefore, there is a need to identify the programmable
determinants of under-five mortality using Cox frailty model to account for sibling-
level correlation for providing valid estimates needed for policy-decision making. In
order to appreciate the influence of sibling-level correlation over the estimates of the
determinants of under-five mortality, the results of Cox frailty model can be
compared with the Cox proportional hazards model and variance-corrected Cox

model. It is beyond the scope of this study to look at frailty models.

2.8. Model checking using statistical criteria

After fitting the Cox model and all the parametric models, the adequacy of model fit
was assessed using residuals. In linear regression methods, residuals are defined as the
difference between the observed and predicted values of the dependent variable.
However, when censored observations are present and partial likelihood function in

the Cox PH model, the usual concept of residuals is not applicable. Three major

52



residuals are Cox-Snell residual, the deviance residual and the Schoenfeld residual. In

this study, Cox- Snell residual was used to assess the adequacy of model fit.

2.8.1. Residual plots

Residual plots were used to check the goodness of fit of the model. One of the most
useful plots is based on comparing the distribution of the Cox-Snell residuals with the
unit exponential distribution. The Cox Snell residual for the i individual with
observed time t; is defined as
1., = H(t:Ix;) = —log[8(t;|x;)],

(2.29)

where t; is the observed survival time for individual i, x; is the vector of covariate
values for individual i, and 5(t;) is the estimated survival function of the fitted model.
If the model fits the data well then the true cumulative hazard function conditional on
the covariate vector has an exponential distribution with a hazard rate of one. In this
study the fitted parametric models were evaluated and compared using the Cox-Snell
residuals. For each model, the Cox-Snell residuals were calculated, their survival
function were estimated using Kaplain —Meier method and then, their cumulative
hazard functions of these estimations were calculated. Finally, according to the Cox-
Snell residuals, the hazard function graphs were drawn and the better fitted model was

the one whose graph was closer to the bisector.

2.8.2 The Akaike Information Criterion (AIC)

The AIC was used to compare the performance of different parametric models.
Typically, we would like models whose log-likelihood is big. The AIC is a measure of
the goodness of fit of an estimated statistical model. The AIC is an operational way of

trading off the complexity of an estimated model against how well the model fits the
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data. Akaike’s method penalizes each model’s log likelihood to reflect the number of
parameter that are being estimated and then compares them.

For our models discussed, the AIC is given by

AIC = -2 log (likelihood) + 2(p+k) (2.30)

Where p is the number of model covariates and k is the number of model specific
distributional parameters. That is k=1 for the exponential model, k = 2 for the weibull,
log logistic and log normal models, and k = 3 for generalised gamma (Klein and
Moeschberger, 1997). Essentially, you compare the AIC scores for different

parametric models and then select the one with the smallest AIC score.

2.9. Data analysis

Using cross - tabulations, descriptive statistics were obtained to give more
information about the distribution of the variables. For each category of each variable,
number of observation and number of failures as well as percentages were obtained.
Kaplan-Meier estimation was done for each variable to determine the survival curves
of each categorical predictor. This provided an insight into the shape of the survival
function for each category. For the categorical variables, log rank test was used to

compare the survival of two or more groups.

Univariate analysis was used to identify all the risk factors before proceeding to more
complicated model. The univariate Cox Proportional hazards models were fitted and
the hazard ratios as well as the coefficients for child survival from different factors
were obtained. Then a full multivariate Cox PH model including all the risk factors
was also fitted regardless of results of univariate analyses to establish if there were
some variables which were not significant in the univariate analysis but are significant

in the multivariate so as to find variables to be included in the final model. The
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variables were identified as significant using 1%, 5% and 10% significant level. The
study used up to 10% significance level in order to avoid excluding some important
variables in the final model. Then the final model which excluded variables which
were insignificant in both the univariate and multivariate models was fitted.

The proportionality assumption was checked with graphical method and two
statistical methods (including time-dependent covariates in the cox model by using
the tvc and the texp options in the stcox command, and tests based on Schoenfeld
residuals). Time dependent covariates are interactions of the predictor and time. In this
analysis the interaction with log (time) was used because this is the most common
function of time used in time —dependent covariates. If a time —dependent covariate is
significant, this indicates a violation of the proportionality assumption for that specific
predictor. The goodness of fit of the Cox PH model was evaluated using Cox-Snell
residual. If the model fits the data well the true cumulative hazard function
conditional on the covariate vector has an exponential distribution with a hazard rate

of one.

Parametric models such as weibull, exponential, gompertz, log normal, and log
logistic models were fitted to obtain hazard ratios and coefficients. For each kind of
model, the univariate and multivariate models were fitted. The accelerated failure
time (AFT) model of weibull, exponential, log-normal and log-logistic is another

alternative of the Cox PH model and was used when the PH assumption was violated

Residual plots which are also the transformation of the Q-Q plot were used to check
the AFT assumption and to check the goodness of fit of each parametric model.

Performance between AFT models was compared using statistical criteria likelihood
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ratio (LR) test and Akaike information criterion (AIC), a measure of the goodness of
fit for statistical models. The AIC is a measure of the goodness of fit of regression
models that is based on the concept of entropy. It can be viewed as the amount of
information lost when a model is used to describe a set of observations. The AIC
includes a penalty for number of model parameters and thus represents the trade-off
between bias and variance. Lower AIC values indicate a better model fit.
Furthermore, we checked the goodness of fit of the model using residual plots. Post
estimation test for parametric models was also conducted using Cox-Snell residuals to

check the goodness of the model fit. The data was analysed using STATA software.
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Chapter 3 Results

3.1 Descriptive
First descriptive statistics were used to give information about the distribution of the

variables. In this case, the baseline characteristics for each predictor and the outcome
variable in 19,947 participants were tabulated using the descriptive statistics. Table 3

gives the descriptive statistics.

The study involved 19,967 under-five children of which 1,607 were reported to be
dead and 18,360 were alive. Similar proportions of children from urban and rural
areas were reported to have died. On the other hand, 8.6% of the children from
mothers with no education, 8.3% from mothers with primary education, 6.4% from
mothers with secondary education and 4.7% children from mothers with higher

education were reported dead.

Almost similar proportions of children from households which use electricity,
charcoal or wood as source of cooking fuel were also reported dead. And also, the
mortality rate was 8.9%, 8.3%, 7.4%, and 5.6% for children from fathers with no
education, primary education, secondary education, and higher education respectively.
The mortality rate was 7.6%, 8%, and 8.3% for children with flush toilet, pit latrines,
no toilet facility respectively. Similarly, the death rate was 6.6% for households with
two to three members and 8.9% for households with more than eight members. The
proportions of children who were reported dead were almost similar for children from
poor, medium and rich households. The proportions of children who were reported
dead were also approximately similar for children from households with piped water

and those without piped water.
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Table 3 Baseline characteristics and outcomes

Predictor Child is alive Total
No Yes

Type of place | Urban 157(8.28) 1,739(91.7) 1,896

of Rural 1,450(8.02) | 16,621(91.98) | 18,071

Residence Total 1,607 18,360

Mother No education 289(8.6) 3,083(91.5) 3,372

education Primary edu 1,145(8.3) | 12,720(91.7) | 13865
Secondary 168(6.4) 2455(93.6) 2623
higher 5(4.7) 102(95.3) 107
Total 1,607 18,360

Type of | Electricity and gas 16(10.6) 135(89.4) 151

cooking fuel
Wood and charcoal 1591(8.03) | 18,221(91.9) | 18356
Total 1,607 18,356

Partner No education 187(8.9) 1,904(91.1) 2,091

education Primary edu 1,009(8.3) | 11,149(91.7) | 12,158
Secondary 360(7.4) 4,523(92.6) 4,883
higher 19(5.6) 322(94.4) 341
Don’t know 7(7.1) 92(92.9) 99
missing 6(12) 44(88) 50
Total 1,588 18,032

Source of | Piped water 274(7.86) 3,212(92.14) | 3,486

drinking Tube well water 904 10,088 10992

water Dug well water 306 3534 3840
Surface water 91 1189 1280
Total 1,607 18,360

Type of toilet | Flush 18(7.6) 219(92.4) 1,836

facility Pit latrine 1,348(8.02) | 15,468(91.9) | 16616
No toilet facility 241(8.3) 2673(91.73) | 2914
Total 1,607 18,360

Household 2 to 3 members 153(6.59) 2,170(93.41) | 2,323

size 4 to 5 members 564(7.67) 6,789(92.33) | 7,353
6 to 7 members 527(8.59) 5,661(91.33) | 6,188
8 to 23 members 363(8.87) 5,661(91.48) | 4,094
Total 1607 18,351

Wealth index | Poorest 339(7.5) 4,195(92.5) 4,534
Poor 378(8.5) 4,093(91.6) 4,471
medium 377(8.4) 4,133(91.6) 4,510
Rich 338(8.9) 3,447(91.1) 3,785
richest 175(6.6) 2,492(93.4) 2,667
Total 1,607 18,360

Access to | No 1,527(8.1) |17,321(91.9) | 18,848

electricity
Yes 80(7.2) 1,039(92.9) 1,119
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Survival time distribution was estimated for each category of the predictor using the
K-M method and compared using the log-rank test. This provided an insight into the
shape of the survival function for each group and gave an idea of whether or not
groups are proportional (i.e. survival functions are approximately parallel). Tests of
equality across strata, to explore whether or not to include the predictor in the final
model, were also considered. For the categorical variables, the log-rank test of
equality across strata which is a non-parametric test was used. The predictor was
included in the final model if the test has a p-value of 0.25 or less. This elimination
scheme was used because all the predictors in the data set are variables that could be
relevant to the model. The predictor which is insignificant in both the univariate
analysis and multivariate analysis was also not included in the final model. Table 4

shows results from the log-rank test.

Table 4 Log —rank test for equality of survival function

Variable Chi(1) p-value
Area of residence 0.19 0.66
Mother education 10.4 0.001
Partner education 5.74 0.01
Access to electricity 1.05 0.30
Wealth index 14.95 0.004
Source of water 2.29 0.51
Type of toilet facility 4.80 0.02
Household size 12.26 0.007
Source of fuel 1.06 0.30
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From the log-rank test of equality across strata, There is a significant difference in
child death between mothers and fathers who had secondary education and higher and
those without any education or with primary education only. There was also a
significant difference in child mortality between those who were poorest, poor,
medium, rich, and richest. Similarly there was also a significant difference in child
death between those who were using at least a toilet facility whether flush or pit
latrine and those without any toilet facility. Another significant difference in child
death was due to household size. However, there was no significance difference in
child mortality between those children living in rural areas and urban areas. There was
also no significant difference between those using electricity and those using charcoal
.The table also show no significant difference between those using tapped water and
untapped water. In addition there was no significance difference in child mortality

between those household with access to electricity and those without.

The log-rank test of equality across strata for the predictor mother education has a p-
value of 0.0013, thus mother education was included as a potential candidate in the
final model. The log-rank test of equality across strata for the predictor source of
water has a p-value of 0.51 hence was not included in the final model because it was
also insignificant in both the univariate as well as the multivariate model of Cox and

all parametric models.

The log rank-test of equality for the predictor access to electricity has a p-value of
0.30 thus access to electricity was not included in the final model since it is also not
significant in both the univariate and multivariate analysis of both Cox and other

parametric models.
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The log-rank test of equality for wealth index has a p-value of 0.0048, thus was
included in the final model. Similarly, the log-rank test of equality for source of
cooking fuel has a P-value of 0.30, but was still included in the final model because it
was significant in the multivariate analysis of all the parametric models. In additional,
the log-rank test of equality for household size is 0.007, thus household size was

included in the final model.

The log-rank test of equality across strata for the predictor partner education has a p-
value of 0.017, thus partner education was included in the final model. Similarly type
of toilet facility was included in the final model because has a p-value of 0.028.0n the
other hand, area of residence was not included in the final model because its log-rank
test of equality across strata has a p-value of 0.66 which is greater than 0.25 and was
also not significant in both the univariate and multivariate analysis of both Cox and
parametric survival models. Figure 2 shows the K-M estimates for different predictors

and Appendix one shows results of the fitted parametric models with all covariates.
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Figure3.1 Kaplan Meier Curves comparing categoriepfor each risk factor (Analysis time is in months)
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3.2. Cox PH Model

Univariate analysis was used to check all risk factors before proceeding to more
complicated models. Univariate and multivariate Cox Proportional hazard regression
model for mother education, area of residence, partner education, Type of toilet
facility, source of cooking fuel, access to electricity, Source of water, household size,
and wealth index was used. The likelihood ratio test was considered in both the

univariate and multivariate Cox PH model.

From both the univariate and multivariate analysis, Low levels of mother education,
larger household size, and poor households were significantly associated with high
under-five mortality rates. Using the multivariate analysis results, there was decreased
risk for children from mothers who had secondary and higher education (HR=0.81,;
Cl= 0.67, 0.97). Larger household sizes of about 8 or more members were
significantly associated with increased risk of child mortality (p-value=0.005) as
compared to smaller household size (HR=1.31; 95%CIl = (1.08, 1.59)). Similarly,
children from richest households faces lower hazard (p-value=0.01) as compared to
children from poor households (HR=0.74, 95% CI=(0.59, 0.93)). In the multivariate
analysis of Cox PH model use of electricity as the source of cooking fuel was
significantly associated with higher child mortality rate (P-value=0.02). This is
different from the Cox PH univariate analysis results where source of cooking fuel
was not significantly associated with child mortality. From the univariate analysis,
Households with educated fathers had lower hazard (HR= 0.87) compared with
household with fathers who had primary or no education (p-value=0.02, 95% CI=
0.77 to 0.97). Similarly, in the univariate analysis, children from household with no
toilet facility were at a higher risk of child mortality (HR=1.23) as compared to those

children from household with a toilet facility (p-value=0.03). From both univariate
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and multivariate analysis, area of residence, source of water, and access to electricity

were not significantly associated with child mortality. Table 5 shows both the

univariate and multivariate results of Cox PH model. Note that urban setting, mother

with no or primary, use of electricity and gas as as source of cooking fuel, partner

with no or primary education, use of piped water, availability of toilet facility,

household size of two to three members poor and no access to electricity were used as

the reference categories.

Table 5 Univariate and multivariate Cox PH model for the relative hazard of child mortality

Univariate analysis

Multivariate analysis

Haz. | 95%CI p- Haz.Ratio | 95%CI p-value

Ratio value
Rural area 096 |(0.81,1.13) 0.67 |.86 (0.71, 1.06) 0.16
Mother with | 0.773 | (0.66,0.91) 0.001
secondary and 81 (0.67,0.97) 0.02
higher education
Access to | 0.890 | (0.71,1.11) 0.31

- 1.06 (0.79, 1.41) 0.68
electricity
Wood and charcoal | 0.774 | (0.47,1.26) 0.30
515 (0.29,0.90) 0.02
as source of fuel
Source of water
Non piped water | 1.15 [(0.780,1.69) [0.48 [.95 [ (0.86,1.05) [0.34
Household size
4-5 members 110 |(0.92,1.31) 029 |1.09 (0.90, 1.30) 0.36
6-7 members 1.23 | (1.02,1.47) 0.02 |1.19 (0.99, 1.43) 0.06
8-23 members 131 |(1.08,1.58) 0.005 | 1.31 (1.08, 1.59) 0.006
Having toilet | 1.225 | (1.02,1.47) 0.03
facilit 1.18 (.97,1.44) 0.10
y

Partner with | 0.87 | (0.77,0.97) 0.02
secondary and 94 (0.83,1.07) 0.36
higher
Wealth index
poorest 0.87 |(0.75,1.01) 0.08 |0.86 (0.75,1.00) 0.05
medium 0.98 |(0.851.13) 0.83 |0.99 (0.86,1.14) 0.89
rich 1.04 |(0.90,1.21) 054 |1.04 (0.89,1.21) 0.49
richest 0.77 |(0.64,0.91) 0.004 | 0.74 (0.59,0.93) 0.01
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A multivariate Cox PH model was then fit using only covariates which were
significantly associated with child mortality (Mother education, household size,
wealth index, type of toilet facility, and source of cooking fuel) at 5% significance
level. The final multivariate Cox Proportional hazard model which was fitted using
six is then given by:
h;(t) = hy(t)exp(—0.20Educated mother — 0.79Cooking fuel
+ 0.08Hsizey to 5 members0-16HSiZe6 1o 7 members
+ 0.26Hsizeg or more mempbers + 0.15No Toilet facility

— 0.15Poorest status — 0.01medium status + 0.06Richstatus
— 0.21richest status — 0.06educated father)

After a Cox PH model which included significant variables only is fitted in the
analysis, the PH assumption assessed. To check proportionality, time —dependent
covariates were included in the model. Time dependent covariates are interactions of
the predictors and time. In this study log (time) was used because this is the most
common function of time used in time-dependent covariates but any function of time
could be used. If time dependent covariate is significant it indicates violation of the
proportionality assumption for that specific predictor. From Table 6, the results
indicate that the PH assumption for wealth index is violated in some of the categories

(P-value for medium status times t is 0.01 ).
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Table 6 Test of Test PH assumptions by including time dependent covariate in

the model
predictor \ Coef. \ Std. Err. z P-value |95% CI
main
Mother education -0.14 0.13 -1.08 0.28 -0.39,0.11
Source of fuel -0.94 0.35 -2.71 0.01 -1.62,-0.26
Wealth index
poorest status -0.30 0.11 -2.66 0.01 -0.52,-0.08
medium 0.65 0.20 3.26 0.00 0.26,1.05
rich 0.13 0.11 1.16 0.25 -0.09,0.34
richest -0.09 0.15 -0.59 0.56 -0.37,0.20
Household size
4 to 5 members 0.03 0.13 0.26 0.80 -0.22,0.28
6 to 7 members 0.06 0.13 0.44 0.66 -0.20,0.31
8 or more members 0.19 0.14 1.40 0.16 -0.08,0.46
Type of toilet facility 0.14 0.14 1.01 0.31 -0.13,0.42
Partner education -0.03 0.09 -0.33 0.74 -0.21,0.15
tve
Mother education -0.05 0.07 -0.73 0.47 -0.20,0.09
Source of fuel 0.15 0.23 0.65 0.51 -0.30,0.59
Wealth index
poorest status 0.10 0.06 1.79 0.07 -0.01,0.22
medium -0.25 0.10 -2.46 0.01 -0.45,-0.05
rich -0.05 0.06 -0.90 0.37 -0.17,0.06
richest -0.10 0.08 -1.24 0.22 -0.26,0.06
household size
4 to 5 members 0.04 0.07 0.54 0.59 -0.10,0.18
6 to 7 members 0.08 0.07 1.14 0.26 -0.06,0.23
8 or more members 0.05 0.08 0.70 0.49 -0.10,0.21
Type of toilet facility 0.01 0.08 0.11 0.91 -0.14,0.16
Partner education -0.02 0.05 -0.38 0.70 -0.12,0.08

Note: variables in tvc equation interacted with In(_t)

The Schoenfeld and scaled Schoenfeld residuals were also used to test the PH

assumption. The p-value for testing whether the correlation between Schoenfeld

residual for this covariate

and ranked survival time was zero was checked. For wealth index, the P-value was

less than 0.05 for the rich category which suggest that the PH assumption is violated
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for wealth index, but reasonable for all the other covariates. Table 7 shows the

schoenfeld results.

Table 7 Test for proportional hazard assumption using schoenfeld residuals

rho Chi2 df p-value

Mother education -0.004 0.03 1 0.85
Source of fuel 0.02 1.19 1 0.27
Poorest 0.02 0.79 0.37
Medium -0.03 2.39 0.12
Rich -0.04 3.67 0.04
richest -0.04 2.63 0.10
Household size

4 to 5 members 0.02 0.81 1 0.36
6 to 7 members 0.04 2.77 1 0.09
8 or more members 0.03 2.01 1 0.15
toilet facility -0.0005 | 0.001 0.98
Partner education -0.002 0.01 0.92
Global test 17.14 1 0.104

For each predictor, graph of the scaled schoenfeld assumption was also obtained. A
horizontal line in the graphs is further indication that there is no violation of the
proportionality assumption. Using Figure 3, two categories for wealth index; poorest
category (statusl) and medium category (status2) seem to violate the proportionality
assumption. Thus, using all the three methods to check the PH assumption, wealth

index violate the assumption of proportionality.
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Figure3 Test of PH assumptions graphically using scaled Schoenfeld
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The goodness of fit was also assessed by Cox-Snell residual plot. Cox —Snell residual
plot is presented in Figure 4. There is some evidence of a systematic deviation from
the straight line, which gives us some concern about the adequacy of the fitted Cox

model.

0 .05 A .15 2
Cox-Snell residual

Figure 4 Cumulative hazard plot of the Cox —Snell residuals for the Cox PH model with significant predictors

3.3 Parametric Results

This section presents results for each of the parametric models that were used in this
study. Both the univariate and multivariate analysis were used for all the fitted
parametric models appendix 2 shows the results of multivariate analysis using all the
nine predictors. Table 8 shows the estimates of the parametric models fitted using
only the variables which were significant at 5% significance level in either the
univariate or the multivariate of the fitted parametric models using all the nine

predictors.
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Table 8 Coefficients and hazard rate from parametric models for under-five children Time to death (n=19460)

exponential weibull Gompertz Log-logistic log-normal
. Std. | p- Std P- Std. | P- Std. P- Std.
Predictor Coef. Err. | value Coef. error | value Coef. Err. | value Coef. Err. value Coef Err. P-value

Mother with secondary or

. . -0.20| 0.09| 0.04| -020| 0.09| 003|-019| 0.09| 0.04| 0.38 0.18 | 0.03 0.36 | 0.18 0.04
higher education

Wood and charcoal -0.77 |1 027 | 0.01| -0.78| 0.27| 0.00|-0.77 | 0.27| 0.00| 1.53 0.53 | 0.00 1.58 | 0.56 0.01
wealth index

poorest -0.16 | 0.08 | 0.04| -0.15| 0.08| 0.04|-0.15| 0.08| 0.04| 0.30 0.15| 0.04 0.35| 0.15 0.02
medium -0.02 | 0.07| 0.81| -0.01| 0.07| 0.89|-0.01| 007| 0.93| 0.01 0.14 | 0.92 0.03| 0.15 0.98
rich 0.04|0.08| 0.63| 0.05| 008| 054| 005| 0.08| 052 -0.10 0.15| 051 -0.11| 0.15 0.48
richest -0.25|0.10| 0.02| -0.23| 0.10| 0.03|-0.22| 0.10| 0.04| 0.43 0.20 | 0.03 0.39 | 0.20 0.04
household size

4 to 5 members -0.03|009| 0.74| 0.04| 0.09| 069 0.07| 0.09| 0.48| -0.07 0.18 | 0.68| -0.08| 0.18 0.64
6 to 7 members 0.06 | 0.09| 055| 0.12| 009| 0.49| 016 | 0.09| 0.10| -0.24 0.18 | 0.18 | -0.24 | 0.18 0.19
8 to 23 members 0.16 | 0.10 | 0.10| 0.23| 0.10| 0.02| 026 | 0.10| 0.01| -0.44 0.19 | 0.02| -0.45| 0.19 0.02

No toilet facility available 0.17 010 009| 016| 0.10| 011| 015 010| 0.12] -0.31 0.19| 011, -0.30, 0.19 0.13

partner with secondary and

. : -0.05| 0.07| 042| -005| 0.07| 041)|-0.05| 0.07| 043| 0.11 0.13 | 0.40 0.11 | 0.13 0.40
higher education

_cons 4971029 | 0.00| -345| 0.29| 000|-39 | 029| 0.00| 6.18 0.56 | 0.00 6.99 | 0.59 0.00
/In_p -0.63 | 0.02| 0.00

p 053| 001, 051

1/p 1.88 | 0.04

/In_gam 0.60 0.02 | 0.00

/gamma -0.09 | 0.00| 0.00| 1.82 0.04

/In_sig 1.34 | 0.02 0.00
sigma 3.82 | 0.08
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3.3.1 Exponential Model
In the exponential model which was fitted using all the nine variables, mother

education, and wealth index were found to be significantly associated with child
mortality in both the univariate and multivariate analysis. In the exponential model,
Partner education and type of toilet facility and household size was significantly
associated with child mortality in the univariate analysis but not in the multivariate
analysis. On the other hand, source of cooking fuel was significantly associated with
child mortality in the multivariate analysis but not in the univariate analysis. As found
in the Cox model, area of residence, source of water and access to electricity were not
significantly associated with child mortality. The fitted hazard function for the
exponential model is:

xj,éx = —0.20educated mother — 0.77Cooking fuel — 0.16poorest

— 0.02medium + 0.04rich — 0.25richest — 0.03Hsize, o 5 members
+ 0.06Hsizeg to 7 members + 0-16g or more + 0.17No toilet facility
— 0.05Educated father

And B,= -4.97

the estimate of the baseline hazard is
h(t)=exp (-4.97) =0.007,

And the estimate of the overall hazard is

h(t]x;) = 0.007exp(—0.20educated mother — 0.77Cooking fuel — 0.16poorest

— 0.02medium + 0.04rich — 0.25richest — 0.03Hsize, to 5 mempers
+ 0.06Hsizeg to 7 members + 0.16g or more + 0.17No toilet facility
— 0.05Educated father)
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3.3.2. Weibull Model

In the weibull model which was fitted using all the nine predictors, mother education,
wealth index and household size were all found to be significantly associated with
child mortality in both the univariate and multivariate analysis. Source of cooking fuel
was found to be significantly associated with child mortality in the multivariate
analysis but not in the univariate analysis. On the other hand toilet facility and partner
education was found to be significantly associated with child mortality in the
univariate analysis but not in the multivariate analysis. As found in the Cox and
Exponential models, area of residence, source of water and access to electricity were
all insignificantly associated with child mortality. The estimate of shape parameter in
Weibull was 0.53 which is less than 1 implying that the hazard is monotone
decreasing and the 95% CI is (0.52, 0.56) which does not cover the null value
1.Hence the Weibull model is better than the exponential model. The estimated hazard

function for the i" individual is:

hi(t) = Ayt" exp(B'*1)
Where AytY~1 is the baseline hazard function.

= —3.45 % 0.53t%>3~exp(—0.20E ducated mother — 0.78Cooking fuel
+ 0.04HSiZ€4 to 5 members + 0-12H5i266 to 7 members
+ 0.23Hsizeg or more mempers + 0.16No Toilet facility
— 0.15Poorest status — 0.01lmedium status + 0.05Richstatus
— 0.23richest status — 0.05educated father)

3.3.3. Gompertz model
As with the other models described, a model with all the nine predictors was fit and
mother education, household size, and wealth index were found to be associated with

child mortality in both the univariate and multivariate analysis. Source of cooking fuel
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was also found to be significantly associated with child mortality in the multivariate
analysis but not in the univariate analysis. On the other hand, toilet facility and partner
education was also found to be significantly associated with child mortality in the
univariate analysis but not in the multivariate analysis. As depicted in Table 8, gamma
which is the shape parameter is -0.09, implying that the hazard decreases with time

(p-value < 0.001).

In the Gompertz model, there is decreased mortality risk for children born from
educated mothers (HR=0.82, CI=0.68 to 0.98).children from the educated mothers
(those with secondary and higher education) face 82% of the hazard that children
from uneducated mothers (no and primary education only) face. There is a decreased
risk of child mortality for children from poorest and richest families as compared to
those from poor families. Children born from poorest households face about 85% of
the hazards that children from the poor family face (P-value = 0.04, C1=0.73 to 0.99).
Also children from the richest family face about 80% of the hazard that children from

the poor family face (P-value = 0.65 to 0.98).

There is increased child mortality risk for children from households with many
members as compared to households with few members. In this case, children from
household with 8 to 23 members faces 30% more hazard than children from
households with two to three members (P-value = 0.008, Cl = 1.07 to 1.57). With
regard to the source of cooking fuel, children from households which used fire wood
or charcoal as source of cooking fuel faces 46% of the hazards children from

households using electricity face( p-value=0.004, CI=0.27 to 0.78).
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3.3.4. Log-logistic model

As found in the weibull and Gompertz model, Mother education, household size, and
wealth index were found to be significantly associated with child mortality in the
univariate and multivariate analysis of Gompertz model. Source of Cooking fuel was
significant in the multivariate analysis only and type of toilet facility and partner
education were significant in univariate analysis only. At 10% level of significance,
type of toilet facility was significant. However, area of residence, source of water and
access to electricity were not significantly associated with child mortality in both the
univariate and multivariate analysis of log-logistic model. A log-logistic model with
the significant predictors as well as significant categories was finally fitted. The fitted

survival function for the ith individual is:

$i(8) = {L+ t7 exp(@)}

1
= {1+ 1197 exp ()}

1
= 1a2 {(-6.18) -0.38Educated mother-1.53Cooking fuel + 0.07Hsize, t, 5 members

+ 0.24HSiZ€6 to 7 members T 0.44HSiZ€8 or more members
+ 0.31No Toilet facility-0.30Poorest status-0.01medium status
+ 0.10Richstatus-0.43richest status-0.11educated father}

The estimated hazard function for the i individual is:
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- 1 1
hi(t) = E{l +t oexp(— @)} !

1
= @{1 + T8z exp(-0;)} .

Where ®; is as defined above

3.3.5. Log-normal model

The results of the univariate and multivariate analysis of log-normal model are similar
to those of log-logistic model. Education of the mother, using fire wood and charcoal
as source of cooking fuel, small household size, and having more wealth increases the
survival time of children. From the univariate analysis living in households with no
toilet facility and living in household with uneducated father, decreases the survival
time thus increases the hazard rate. From the log-normal model, the hazard is high in
the first early months of life and then it decreases with time. Figure 5 shows the mean

hazard for each of the six significant variables separately.

Mathematically, log normal AFT model is given by:
ln(t]-) = x;fy + In(7))

Thus

In(t;) = 6.99 + 0.36 Educated mother + 1.58Cooking fuel — 0.08Hsize, 1o 5 members
— 0.24Hsizeg 10 7 members — 0-45HSiZeg or more members
— 0.30No Toilet facility + 0.35Poorest status + 0.0lmedium status
— 0.11Richstatus + 0.39richest status + 0.11educated father}
+1In(7))
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Where the random quantity In(z;) has a distribution determined by what is assumed

about the distribution of z;. In this case 7; follows a log-normal distribution, which

implies that In(z;) follows a normal distribution. Figure 5 show that the hazard

function decreases with time.
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3.4. Determining the best model fit

After fitting the Cox and the parametric models, the models were compared using the
Akaike Information Criterion. In addition, the goodness of fit for each of the

parametric model was also established.

3.4.1. Model selection

The AIC was used to compare the models and each model was fitted using mother
education, partner education, source of cooking fuel, type of toilet facility, household
size, and wealth index. Table 9 shows the AIC for each model. Comparing the AIC of
parametric models, the log-normal model has the smallest AIC scores
(AIC=15,114.96) hence it appears to be an appropriate parametric model according to
AIC. It is followed by Gompertz (AIC=15,143.9) model and then log-logistic

(AIC=15232.71).

Table 9 Akaike Information Criterion(AIC) in the parametric models (n=19460)

Distribution LL(null) LL(model | df AIC
Exponential -8,350.26 -8,329.9 12 16,683.89
Weibull -7,857.76 -7,837.28 13 15,700.57
Gompertz -7,793.57 -7,772.6 13 15571.2
Loglogistic -7,846.67 -7,825.89 13 15,677.79
Lognormal -7,765.62 -7,745.70 13 15517.4
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3.4.2. Cox Snell Residual

Furthermore, the goodness of fit of the model was checked using residual plots. The
cumulative hazard plot of the Cox-Snell residuals in all the parametric models is
presented in Figure 6 From the plot Cox-Snell residual plot for log-normal model
seems to fit the data well as compared to the plots of the other models since the
plotted point lies closer to the line that has a unit slope and zero intercept. On the
other hand exponential model is the poorest fit since there is so much deviation of the
Cox-Snell residual plot from the 45 degree straight line. So based on the AIC and
Cox-Snell residual plots, log-normal AFT is the most suitable model as compared to

the other parametric models.
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Chapter 4 Discussions

The aim of this study was to investigate the comparative performance of Cox and
parametric models in the survival of under-five children exposed to different
household environments. The Cox model as well as parametric models was fitted in
this study using nine variables. The PH assumption of Cox model was assessed using
three different methods; adding time dependent covariate to the model, using
Schoenfied residuals and using graphs of scaled schoenfeld residuals. In all the
methods, the PH assumption was violated for wealth status. And yet the PH
assumption must always hold if the results from the Cox model are to be reliable. The
study further assessed the adequacy of the fitted Cox model using Cox snell residuals
and the Cox model shows some lack of fit, and also comparing the Cox Snell residual
of Cox and of Log-normal, the Cox-Snell residual for lognormal was better, hence

there are some doubts about the suitability of the fitted Cox model.

The Akaike Information criterion was used to evaluate among the parametric models
and log-normal model has the smallest Akaike scores hence was found to be the
suitable model followed by Gompertz and then Log logistic. The study also evaluated
the adequacy of the fitted parametric models using Cox Snell residuals and again
lognormal indicated a better fit followed by Gompertz and then log logistic. Both log-
normal and log-logistic does not have PH metric, they are in AFT metric. In this
study, the PH assumption was somehow violated and these AFT models have proved
to be fruitful. Although Weibull is the most widely used parametric proportional
hazards model (Collette, 2003), Gompetz PH model has been found to be a better

model than weibull. Exponential model had the highest akaike score amongst the
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parametric models and its Cox Snell residual plot showed lack of fit hence it is also
not the best model to use in the analysis of child survival. Therefore, based on AIC
criteria and Cox-Snell residuals the study finally concludes that the log-normal model
is the best fitting parametric model. The hazard rate for the log-normal model was
computed for each of the six variables and the hazard rates are generally declining
over time which is consistent with the well-known fact that the risk of death in Africa
is high at very young ages and then declines rapidly beyond one and two years of age.
For all the covariates, the results show that the hazard is high in the first six month of
life but it is very high for children from mothers or fathers with no or primary
education, for children from households with no toilet facility, for children from
households which use electricity as a source of cooking fuel, for children from
households with more members. Appendix two shows the baseline hazard for all

parametric models.

The Cox PH model is the most widely used way of analysing survival data in the
clinical research. From the review of literature of survival analysis, there are few
studies using the Cox PH models that check PH assumption (Altman et al, 1985).
However, PH assumption is not always satisfied in the data. There are various
solutions to consider if the PH assumption does not hold. One of the alternative
methods for the analysis of survival data even when the hazards are not proportional
is use of the AFT model that does not assume PH metric like log logistic and log
normal model AFT model. Based on asymptotic results, AFT models lead to more
efficient parameter estimates than Cox model when the PH assumption is violated

(Cleves 2010).

This study explored the impact of household socioeconomic and environmental

determinants on child mortality and the univariate and multivariate analysis of both
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Cox and parametric models was used. Mother education, wealth index, and household
size were found to be significantly associated with child mortality in both the
univariate and multivariate analysis of both Cox and parametric models except in the
univariate and multivariate analysis of exponential model where household size was
not significantly associated with child mortality. Source of cooking fuel was
significantly associated with child mortality in the multivariate analysis of both Cox
and Parametric models but not in the univariate analysis. On the other hand, partner
education and type of toilet facility were all significantly associated with child
mortality in the univariate analysis only of both Cox and Parametric models. On the
other hand, area of residence, source of water and access to electricity were not
significantly associated with child mortality in both the univariate and multivariate

analysis of both Cox and Parametric models.

Mother education was significantly associated with child mortality. The results
indicate that risk of child mortality are lower among women having secondary and
higher education than those having no or primary education. These results are
consistent with the findings from previous research by Zerai(1996), Mutunga (2004),
Omulaubi(1995) and uthman(2008). Mutunga (2007) argues that maternal education
works through three different pathways. It influences the socio-economic level of
households, govern mothers attitude, and influences her behaviour (including health
seeking) on issues relating to health of their children. Uthman and Mubashir B. (2008)
concluded that mother education played a protective role against death and suggest
that improving maternal education may be a key to improving child survival in
Nigeria since educated mother had a better chance of satisfying important factors that
can improve infant survival: the quality of feeding, general care, household sanitation,

and adequate use of preventive and curative health services.
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There was decreased child mortality risk for children born from poorest and richest
households as compared to those children born from poor households. The reduction
in child mortality among the poorest families may be due to underreporting of under-
five deaths. These results are consistent with the findings of Mojekwu (2012) and
Mutunga (2004) where better survival prospects were also found to exist for children
born in wealthier families but not poorest families. Wealth status is associated with
the availability of nutritional resources, which is especially important for the survival
of a child because once infants reach the age of six months; they can no longer depend
on nourishment from breast milk alone. Children from poor households are exposed
to risk of diseases through inadequate water and sanitation, Crowding and poor
housing conditions. They are also, more likely to have lower resistance to infectious

diseases because they are undernourished (WHO 2002).

There is increased child mortality risk for children born from households with many
family members as compared to children born from households with few members.
Burstrom (1999) found similar results and he suggested that small household size
contribute a lot to the reduction of infant and child mortality due to the family ability
to afford better facilities and nutrition. Thus increase the probability of survival in
children. These results are different from the findings of Mutunga (2004) where
household size was negatively related to child mortality. That is lower child survival

prospects were experienced in smaller households.

With regard to the source of cooking fuel, children born in households using less
polluting fuels such as electricity and gas as their main source of cooking fuel have
higher mortality rates as compared to those using high polluting fuels like Charcoal
and fire wood. This result is like that because the number of households using

electricity was relatively small as compared to those using charcoal or wood, and also
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most of them were urban dwellers. The results are contrary to the findings of Mutunga
(2007) and Mojekwu (2012) where high polluting fuels was associated with high child

mortality rates.

Children from household with no toilet facility faces increased mortality risk as
compared to those children from a household with either flush toilet or pit latrine.
Children born in households with either flush toilet or pit latrines have lower
mortality rate than those born in households without any toilet facility. This
underscores the importance of good quality sanitation in the prevention of diseases
such as cholera, diarrhoea and dysentery. Modern sanitation technology ensures the
proper disposal of human waste, which is important in preventing the spread of these

diseases. Mojekwu (2012), and Mutunga(2004) also found similar results

Children from educated fathers (secondary and higher) experiences decreased
mortality rate as compared to children from uneducated fathers. These results are
consistent with the findings of Mturi and Curtis(1995), and Agha (2010) who found
that father’s literacy was associated with under-five mortality. He suggested that an
educated husband can make better decisions and seek timely and appropriate
treatment for his children. Father education was significant in the univariate analysis
but not in the multivariate analysis. This may be so because mother education was
also affected by partner education since more educated women may be able to marry

men who are educated and can care more about children.

Avrea of residence was not significantly associated with child mortality. There was no
significant difference in the risk of child mortality for children from rural and urban

areas. These results agrees with the argument of Akoto and Tabutin (1989) who
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argued that it is not much the fact that living in urban setting that provides the
advantage in terms of mortality to children born of urban mothers, but Socioeconomic
factors instead. This includes high concentration of salaried workers (who generally
have higher incomes) in urban centres, better education in urban areas and
concentration of public infrastructure in urban areas that provides sanitation services
including water supply, household waste and excreta removal and disinfection and
better hospital infrastructure in the urban areas. On the contrary, Mturi and Curtis
(1995) found that under-five mortality risk was associated with area of residence. In
this case Children from rural areas were at a higher risk than those children born in
urban areas. But the rapid growth of the urban population has reduced the child
mortality gap which was there between children from urban and rural. This rapid
population growth in the urban has strained the ability of local areas to provide
adequate levels of infrastructure and public services, resulting in environmental

threats on child health such as poor sanitation, water supply, and access to health care.

Access to electricity is not statistically significantly associated with child mortality.
There is no significant difference in child mortality between children from households
with electricity and those without. These results are different from the findings of

Mutunga (2004) who found lower mortality rates in the households with electricity.

Source of drinking water was not significantly associated with child mortality rates.
This could be due to the consistent use of water guard or boiled water by households
without access to tapped water (Kumwenda 2009). It might also be due to the use of
boreholes in the villages since ground water is relatively a safe source of portable
water in rural areas as compared with other unprotected water sources like river,
spring, well water etc. Similarly those households which use piped or tapper water,

they do share the taps as a result, containers used for collection and transportation of
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water from boreholes are mostly without covers. It is always observed that when
lifting and balancing the collection vessel on the head, fingertip-dipping is common
and unavoidable resulting in contaminated water. This, leads to no significant
difference in child mortality between those using tapped and untapped water. These
results are different from the findings of Mutunga (2004), Cornelia K. and Ingo P.
(2011) who observed higher mortality rates among infants and children who lack

access to safe drinking water.
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Chapter 5 Conclusion and recommendation

In this study, low levels of mother education, poor wealth status of the household,
large household size and Source of Cooking fuel, have been found to be significantly
associated with higher under-five children mortality risk. From the univariate
analysis, low father education levels and no toilet facility have been also found to be
significantly associated with high child mortality risk. On the other hand, area of
residence, source of drinking water and access to electricity were not significantly
associated with child mortality. Source of cooking fuel was related to child mortality.
In this case, those using less polluting fuels like electricity had higher mortality rates
as compared to those using more polluting fuels like charcoal and wood. This is in
contrast with the findings of other similar studies, as such, there is a need for further

research.

In addition, previous studies have found area of residence to be significantly
associated with child mortality. This is different from the findings of this study, thus
calling for further studies as to why the gap in child mortality is now minimal
between rural and urban dwellers. One main disadvantage of using the parametric
model is that the specific distribution of survival time is unknown in many cases.
Further study of this data could attempt using a non-parametric version of the AFT
model which does not require the specification of the distribution that can be applied
in child mortality data (Wei, 1992).The results from this model could then be

compared with the standard AFT model and Cox PH models.

Despite our intention in recording all covariates relevant to a specific analysis, we
might encounter heterogeneity in the sample that cannot be explained by the observed

covariate alone. Further similar studies should consider using frailty models as these
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can be informative. Then compare the performance of Cox frailty models with that of

the standard Cox model.

In summary, the results of the current study suggest that when implementing survival
analysis in under-five child mortality, using the PH model may not be the optimum
approach. It is important to identify the distribution of Overall survival and to seek for
an appropriate model like AFT models for data analysis. The results from an AFT
model are easily interpreted and provide a more appropriate description of survival
time in many researches, and should be considered as an alternative to the Cox PH

model.

The choice of the appropriate model will certainly lead to identify real factors that are

associated with child mortality, thereby help to have a more effective interventions.
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Appendix 1 Parametric Univariate Estimates
Appendix 1 shows the Coefficients and Hazard ratios for univariate analysis for exponential PH, weibull PH, Gompertz PH, lognormal

AFT and log-logistic AFT model. From the table, Mother Education, household size, type of toilet facility, and partner education were

significantly associated with child mortality in all the five parametric models.

exponential weibull Gompertz Log-logisic Log-normal
Predictor Std Haz Std Haz. | Std P Std. | P Std. |P
Haz. Ratio Err. \r/)alue Ratio | Err. \r/)alue Ratio | Err. value Coef. Err | value Coef. Err | value
Mother education 0.78 | 0.06 | 0.001 0.78 0.06 | 0.001 | 0.78 | 0.06 | 0.001 | 0.48 | 0.15| 0.001 0.43 | 0.15 | 0.005
Area of residence 0.97 | 0.08 0.7 0.97 0.08| 0.68| 0.96| 0.08| 0.64| 0.08| 0.16 0.64 0.09 | 0.17 | 0.57
electricity 0.88 01| 0.25 0.89 0.1 0.3 0.9 01| 035| 0.22| 0.22 0.31 0.19 | 0.22 0.4
Source of fuel 0.8 0.2 | 0.38 0.79 02| 034| 0.78 02| 0.32 0.5 0.49 0.31 0.59 | 052 | 0.26
Source of water 1.00 | 0.05| 0.99 1.00 0.05| 099 | 1.00| 0.05| 0.99| 0.01| 0.09 0.98 0.01| 0.09| 0.96
Household size
4 and 5 members 0.99 | 0.09| 0.90 1.06 0.10| 055| 1.09| 0.10| 0.37| -0.11| 0.17 0.54 -0.11 | 0.7 | 0.53
6 and 7 members 1.11| 0.10| 0.26 1.18 0.11| 0.07| 1.22| 0.11| 0.03| -0.32| 0.18 0.07 -0.32 | 0.18 | 0.07
8 and 23 members 1.20 | 0.12 | 0.06 1.27 0.12| 0.01| 1.32| 0.13| 0.00| -0.47 | 0.18 0.01 -0.48 | 0.19 | 0.01
Toilet facility 1.26 | 0.12 | 0.02 1.24 0.12| 0.02| 1.22| 0.11| 0.03| -0.4| 0.18 0.03 -0.37 | 0.18 | 0.04
Partner education 0.87 | 0.05| 0.02 0.87 0.05| 0.02| 0.87| 0.05| 0.02| 0.26| 0.11 0.02 0.24 0.11| 0.04
Wealth index
poor 0.86 | 0.06 | 0.06 0.87 0.06| 0.06| 087 | 0.06| 0.06| 027 0.14 0.06 0.30 | 0.15| 0.04
medium 097 | 0.07| 0.71 0.98 0.07| 0.78| 0.98| 0.07| 0.82| 0.03| 0.14 0.81 0.02 | 0.15| 0.82
rich 1.02| 0.07| 0.73 1.03 0.07| 0.82| 1.04| 0.07| 057 -0.07 | 0.14 0.58 -0.08 | 0.15| 0.56
richest 0.78 | 0.06 | 0.001 0.76 0.06 | 0.003| 0.76 | 0.07 | 0.004 | 0.51| 0.17 0.03 0.003 | 0.18 | 0.02
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Appendix 2 Multivariate parametric results

loglogistic

exponential weibull gompertz lognormal
predictor :thi'o Std. Err. P>z :Zé'o E:(rj P>z :thi'o E:‘: P>z | Coef. E:‘: P>z | Coef. E:(: P>z
Area Of residence 0.86 0.09 0.15| 0.87 0.09 | 0.16 0.87 | 0.09 | 0.16 0.28 | 0.20 | 0.16 0.27 | 020 | 0.19
highedu 0.81 0.08 0.03| 081 0.08 | 0.03 0.82 | 0.08 | 0.03 0.39 | 0.18 | 0.03 0.37 | 0.18 | 0.04
Access to electricity 1.07 0.16 0.66 | 1.07 0.16 | 0.66 1.08 | 0.16 | 0.62 -0.12 | 0.28 | 0.66 -0.11 | 0.28 | 0.70
fuel 0.53 0.15 0.03 | 0.52 0.15| 0.02 0.53 | 0.15| 0.03 1.29 | 0.56 | 0.02 1.35| 059 | 0.02
poorest 0.86 0.06 0.04 | 0.86 0.07 | 0.05 0.86 | 0.07 | 0.05 0.30 | 0.15 | 0.04 0.34| 015 | 0.02
medium 0.98 0.07 0.75 | 0.98 0.07 | 0.83 0.99 | 0.07 | 0.86 0.03 | 0.14 | 0.86 0.01| 015| 0.93
rich 1.02 0.08 0.81| 1.03 0.08 | 0.71 1.03 | 0.08 | 0.68 -0.06 | 0.15 | 0.68 -0.07 | 0.16 | 0.64
richest 0.72 0.08 0.01| 0.73 0.09 | 0.01 0.73 | 0.09 | 0.01 0.60 | 0.23 | 0.01 0.56 | 0.23| 0.02
water2 0.95 0.05 032 | 0.95 0.05| 0.34 0.96 | 0.05 | 0.36 0.09 | 0.10 | 0.35 0.09 | 0.10| 0.39
hsize
4 to 5 members 0.97 0.09 0.78 | 1.04 0.10 | 0.66 1.07 | 0.10 | 0.46 -0.08 | 0.18 | 0.65 -0.09 | 0.18| 0.1
6 to 7 members 1.07 0.10 0.48 | 114 0.11| 0.15 118 | 0.11 | 0.08 -0.25 | 0.18 | 0.15 -0.25| 0.18 | 0.16
8 or more members 1.19 0.12 0.07 | 127 0.13 | 0.02 132 | 013 0.01 -0.47 | 0.19 | 0.01 -0.48 | 0.19| 0.01
Type of toilet facility 1.20 0.12 0.07 | 119 0.12 | 0.09 118 | 0.12 | 0.10 -0.33 | 0.19 | 0.09 -0.31| 019 | 011
Partner education 0.94 0.06 039 | 0.94 0.06 | 0.38 0.95 | 0.06 | 0.40 0.11 | 0.13 | 0.37 0.12| 013 | 0.37
Constant 6.07 | 1.00 | 0.00 6.85 | 1.02 | 0.00
In_p -0.63 0.02 | 0.00 0.00
p 0.53 0.01| 051 0.00
1/p 1.88 0.04 | 1.80
/In_gam 0.60 | 0.02 | 1.75
gamma -0.09 | 0.00 1.82 | 0.04
/In_sig 1.34| 0.02| 0.00
sigma 3.82 | 0.08| 3.67
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Appendix 3 Hazard functions for different parametric models
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Appendix 4 Relevant pages from the Women and Household
2010 MDHS Questionnaires

[NAME OF COUNTRY]
[NAME OF ORGANIZATION]

DEMOGRAPHIC AND HEALTH SURVEYS

MODEL WOMAN'S QUESTIONNAIRE

WITH HIV/AIDS AND MALARIA MODULES

22 August 2008

IDENTIFICATION (1)

PLACE NAME

CLUSTER NUMBER

HQUSEHOLD NUMBER

REGION

NAME OF HOUSEHOLD HEAD

LARGE CITY/SMALL CITY/TOWN/RURAL (2)
{LARGE CITY=1, SMALL CITY=2, TOWN=3, RURAL=4}

NAME AND LINE NUMBER OF WOMAN

INTERVIEWER VISITS

2

FINAL VISIT

DATE

INTERVIEWER'S
NAME

RESULT*

NEXT VISIT: DATE

TIME

*RESULT CODES:

1 . COMPLETED 4
2 NOT AT HOME 5
3 POSTPONED 6

REFUSED

PARTLY COMPLETED

INCAPACITATED

DAY

MONTH

YEAR

INT. NUMBER

RESULT

TOTAL NUMBER
OF VISITS

(SPECIFY)

COUNTRY-SPECIFIC INFORMATION:

LANGUAGE OF QUESTIONNAIRE, LANGUAGE OF INTERVIEW, NATIVE
LANGUAGE OF RESPONDENT, AND WHETHER TRANSLATOR USED

NAME

SUPERVISOR

DATE

L1

NAME

FIELD EDITOR

QFFICE
EDITOR

KEYED BY

DATE

L]

' This section should be adapted for country-specific survey design.
2 The following guidelines should be used to categorize urban sample points: "Large cities” are national capitals and places with over
1 million population; "small cities" are places with between 50,000 and 1 million population; remaining urban sample points are

“towns",
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SECTION 1. RESPONDENT'S BACKGROUND

INTROBUCTION AND CONSENT

INFORMED CONSENT

Hello. My name is and | am working with {(NAME OF ORGANIZATION). We are
conducting a naticnal survey that asks women (and men) about various health issues. We would very much appreciate your
participation in this survey. This information will help the government to plan health services. The survey usually takes

between 30 and 60 minutes to complete. Whatever information you provide wilf be kept strictly confidential and will

not be shared with anyone other than members of our survey team.

Participation in this survey is voluntary, and if we should come to any question you don't want to answer, just let me know and

| will go on to the next question; or you can stop the interview at any time. However, we hope that you will participate in this survey
since your views are important.

At this time, do you want to ask me anything about the survey?

May | begin the interview now?

Signature of interviewer: Date:
RESPONDENT AGREES TO BE INTERVIEWED ...... 1 RESPONDENT DOES NOT AGREE TO BE INTERVIEWED ... -2 END
+
NO. QUESTIONS AND FILTERS CODING CATEGORIES SKIP
101 RECORD THE TIME.
HOUR .. ...t
MINUTES ............ ...
102 How long have you been living continuously in (NAME OF
CURRENT PLACE OF RESIDENCE)? YEARS
IF LESS THAN ONE YEAR, RECORD '00' YEARS. ALWAYS
VISITOR
103 Just before you moved here, did you live in a city, in a town, or in CITY it
the countryside? TOWN .t
COUNTRYSIDE

the last 12 months, on how many separate occasions have you
traveted away from your home community and slept away?. NUMBER OF TRIPS

In the last 12 months, have you been away from your home YES «or i 1
community for more than one month-at a time?

[n what month and year were you born?

107 How old were you at your last birthday?

COMPARE AND CORRECT 106 AND/OR 107 IF INCONSISTENT.

108 Have you ever attended school? YES (o e 1
NO e 2 |—112
109 What is the highest level of school you attended: PRIMARY ............cccvinnnn 1
primary, secondary, or higher? {2) 2
3
110 What is the highest (grade/form/year} you completed at that
level? {2) GRADE/FORM/YEAR ........
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211 Now | would like to record the names of all your births, whether still alive or not, starting with the first one you had.
RECORD NAMES OF ALL THE BIRTHS IN 212. RECORD TWINS AND TRIPLETS ON SEPARATE LINES.
(IF THERE ARE MORE THAN 12 BIRTHS, USE AN ADDITIONAL QUESTIONNAIRE, STARTING WITH THE SECOND ROW).
212 213 214 215 218 217 218 219 220 221
IF ALIVE: IF ALIVE: | IF ALIVE: IF DEAD:
Whatname | Were Is In what month Is How old was Is (NAME) | RECORD How old was (NAME} Were there
was givento | any of (NAME) | and year was {NAME) | (NAME) at living with | HOUSE- when he/she died? any other
your these aboyor | (NAME)bom? still his/her last you? HOLD LINE “live births
{first/next) births agirl? alive? birthday? NUMBER OF | IF'1 YR', PROBE: between
baby? twins? PROBE: CHILD How many months old | (NAME OF
What is hisfher RECORD (RECORD '00" | was (NAME)? PREVIOUS
birthday? AGE IN IF CHILD NOT | RECORD DAYS IF BIRTH) and
COMm- LISTED IN -LESS THAN 1 (NAME),
PLETED HOUSE- MONTH; MONTHS IF | including
YEARS. HOLD). LESS THAN TWO any children
YEARS; OR YEARS, who died
(NAME)
o1 MONTH AGE IN LINE NUMBER | DAYS... 1
SING BOY 1 YES.. 1 YEARS YES... 1
YEAR MONTHS 2
MULT GIRL 2 NO...2 NO....2
} (NEXT BIRTH) | YEARS.. 3
220
02 MONTH AGEIN LINE NUMBER| DAYS... 1
SING 8oy 1 YES..1 YEARS YES... 1
YEAR MONTHS 2
MUt 2| GiRL 2 NO...2 [I: NO....2
} (G0TO221) | YEARS..3
220
03 MONTH AGE IN LINE NUMBER| DAYS... 1 YES.... 1
SING 8oy 1 YES.. 1 YEARS YES... 1 ADD #
YEAR MONTHS 2 BIRTH
MULT GIRL 2 NO...2 NO....2 v NO..... 2
il (GOTO221) | YEARS..3 NEXT<l
220 BIRTH
04 MONTH AGE IN LINE NUMBER} DAYS... 1 YES....1
SING BOY 1 YES.. 1 YEARS YES... 1 ADD #
YEAR MONTHS 2 BIRTH
MULT GIRL 2 NO...2 D:l NO....2 NO..... 2
il (GOTO221) | YEARS..3 NEXT <
220 BIRTH
05 MONTH AGE IN LINE NUMBER | DAYS... 1 YES.... 1
SING BOY 1 YES.. 1 YEARS YES... 1 ADD#
YEAR MONTHS 2 BIRTH
MULT GRL 2 I 1 NO...2 D:I NO....2 NO.....2
l (GOTO221) | YEARS..3 NEXT <
220 BIRTH
06 MONTH AGE iN LINE NUMBER| DAYS... 1 YES....1
SING 8OY 1 I YES.. 1 YEARS YES...1 ADD #
YEAR MONTHS 2 BIRTH
MULT GIRL 2 NO...2 NO....2 NO..... 2
il (©0TO221) | YEARS..3 NEXT<
220 BIRTH
o7 MONTH AGE IN LINE NUMBER| DAYS... 1 YES.... 1
SING BOY 1 YES.. 1 YEARS YES...1 ADD ¥
YEAR MONTHS 2 BIRTH
MULT 2| GRL 2 NO...2 EI:’ NO....2 NO.....2
i (©oT0221) | vears..3 NEXT <
220 BIRTH

93



212 213 214 215 216 217 218 219 220 221
IF ALIVE: IF ALIVE: | IF ALIVE: {F DEAD:
What name | Were is In what month Is How oldwas | Is (NAME) | RECORD How old was (NAME) Were there
was givento | any of (NAME) and year was (NAME) {NAME) at living with { HOUSE- when he/she died? any other
your next these aboyor | (NAME) born? stifl his/her last you? HOLD LINE live births
baby? births aqin? alive? birthday? NUMBER OF IF" YR', PROBE: between
twins? PROBE: CHILD How many months old | (NAME OF
What is his/her RECORD {RECORD '00" | was (NAME)? PREVIOUS
birthday? AGE IN IF CHILD NOT | RECORD DAYS IF BIRTH) and
COM- LISTED IN LESS THAN 1 (NAME),
PLETED HOUSE- MONTH; MONTHS IF including
YEARS, HOLD}. LESS THAN TWO any children
YEARS: OR YEARS. who died
(NAME) after birth?
08 MONTH AGE IN LINE NUMBER| DAYS... 1 YES.... 1
SING 1}|BOY 1 YES..1 YEARS YES... 1 ADD +
YEAR MONTHS 2 BIRTH
MULT 2] GIRL 2 NO...2 NO....2 NO..... 2
| (G070 221) | YEARS..3 NEXT 4
220 BIRTH
09 MONTH | AGE IN LINE NUMBER | Davs ... 1 YES.... 1
SING 1}BOY 1 | YES.. 1 YEARS YES... 1 ADD ¥
YEAR MONTHS 2 BIRTH
MULT 2| GIRL 2 NO...2 NO....2 NO..... 2
| ©0TO221) | YEARS..3 NEXT#
220 BIRTH
10 MONTH AGEIN LINE NUMBER| DAYS... 1 YES.... 1
SING 1]BOY 1 YES.. 1 YEARS YES... 1 ADD ¥
YEAR MONTHS 2 BIRTH
MULT 2] GIRL 2 NO...2 NO....2 NO..... 2
1 ©oTo221) | vEaRs..3 NEXT <
220 BIRTH
1 MONTH AGE IN LINE NUMBER| DAYS... 1 YES.... 1
SING 1} BOY 1 YES.. 1 YEARS YES... 1 ADD +
YEAR MONTHS 2 BIRTH
MULT 2| GRL 2 NO...2 NO....2 NO..... 2
i} (©0T0221) | vears..3 NEXT+
220 BIRTH
12 MONTH AGE IN LINE NUMBER| DAYS... 1 YES.... 1
SING 1|BOY 1 YES.. 1 YEARS YES... 1 ADD#
YEAR MONTHS 2 BIRTH
MULT 2| GIRL 2 NO...2 NO....2 NO..... 2
J (©0T0221) | vears..3 NEXT <
220 BIRTH
222 Have you had any live births since the birth of (NAME OF LAST 5 1
BIRTH)? IF YES, RECORD BIRTH(S) IN TABLE. 0 2
223 COMPARE 208 WITH NUMBER OF BIRTHS IN HISTORY ABOVE AND MARK:
NUMBERS NUMBERS ARE D
ARE SAME DIFFERENT {PROBE AND RECONCILE)
CHECK: FOR EACH BIRTH: YEAR OF BIRTH IS RECORDED. ]
FOR EACH BIRTH SINCE JANUARY 2001{1): MONTH AND YEAR OF BIRTH ARE RECORDED. |
FOR EACH LIVING CHILD: CURRENT AGE IS RECORDED. |
FOR EACH DEAD CHILD: AGE AT DEATH IS RECORDED. |
FOR AGE AT DEATH 12 MONTHS OR 1 YEAR: PROBE TO DETERMINE EXACT |
NUMBER OF MONTHS. L
224 CHECK 215 AND ENTER THE NUMBER OF BIRTHS IN 2001 (1) OR LATER.
IF NONE, RECORD '0' AND SKIP TO 226.
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[}

QUSEHOLD CHARACTERISTICS

NO. QUESTIONS AND FILTERS CODING CATEGORIES SKIP
101 What is the main source of drinking water for members PIPED WATER
of your household? PIPED INTODWELLING  .......... 1
PIPED TO YARD/PLOT  ............ 12 l. 106
PUBLIC TAP/STANDPIPE  .......... 13 |+
TUBE WELL ORBOREHOLE .......... 21
DUG WELL
PROTECTEDWELL .............. 31 L 103
UNPROTECTEDWELL ............ 32
WATER FROM SPRING
PROTECTEDSPRING ............ 41
UNPROTECTED SPRING .......... 42 |_|
RAINWATER ............ccoiivunnns 51 > 106
TANKERTRUCK  ...........c0onenn 61 |
CART WITH SMALL TANK  .......... 7
SURFACE WATER (RIVER/DAM/ 103
LAKE/POND/STREAM/ICANAL/
IRRIGATION CHANNEL)  .......... 81 -
BOTTLEDWATER ............cvunnn. 91
OTHER 96 — 103
(SPECIFY)
102 What is the main source of water used by your PIPED WATER
household for other purposes such as cooking and PIPED INTO DWELLING  .......... "
handwashing? PIPED TC YARD/PLOT .. .......... 12 ]—> 106
PUBLIC TAP/STANDPIPE  .......... 13
TUBEWELLORBOREHOLE .......... 21
DUG WELL
PROTECTEDWELL .............. 31
UNPROTECTEDWELL ............ 32
WATER FROM SPRING
PROTECTED SPRING  ............ 41
UNPROTECTED SPRING  .......... 42
RAINWATER  ......eoiiiiiinnnannnnn 51 |~—»106
TANKERTRUCK  ................... 61
CART WITH SMALL TANK ~ .......... 71
SURFACE WATER {RIVER/DAM/
LAKE/POND/STREAM/CANAL/
IRRIGATION CHANNEL)  .......... 81
OTHER 96
(SPECIFY)
103 Where is that water source located? INOWNDWELLING ................. 1
IN OWN YARD/PLOT  .............. 2 j—» 106
ELSEWHERE  ..................... 3
104 How long does it take to go there, get water, and
come back? MINUTES  ..............ue.
DONTKNOW ... .. iiiiiiiinannn. 998
ﬁDS Who usually goes to this source to fetch the water for your ADULTWOMAN .. ... ...cciinunen. 1
household? ADULTMAN ..., 2
FEMALE CHILD
UNDER 1S YEARSOLD  .......... 3
MALE CHILD
UNDER1SYEARSOLD  .......... 4
OTHER 6
(SPECIFY)
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NO. QUESTIONS AND FILTERS CODING CATEGORIES SKIP
106 Do you do anything to the water to make it safer to drink? YES ...... Siseasssanuseatansaassanns 1
NO e 2
DONTKNOW ... ..., 8 :L> 108
107 What do you usually do to make the water safer to drink? BOIL ... .. A
ADD BLEACH/CHLORINE ~ .......... B
STRAIN THROUGHACLOTH  ........ c
Anything else? USE WATER FILTER (CERAMIC/
SAND/COMPOSITE/ETC.)  .......... D
RECORD ALL MENTIONED. SOLARDISINFECTION .............. E
LETIT STAND AND SETTLE  .......... F
OTHER X
{SPECIFY)
DONTKNOW ... ... ... ... aa... z
108 What kind of toilet facility do members of your FLUSH OR POUR FLUSH TOLET
household usually use? (4} FLUSH TO PIPED SEWER
SYSTEM . .iiiiiiiiininens 11
FLUSH TO SEPTICTANK  .......... 12
FLUSH TOPIT LATRINE  .......... 13
FLUSH TO SOMEWHERE ELSE 14
FLUSH, DONT KNOW WHERE 15
PIT LATRINE
VENTILATED IMPROVED
PITLATRINE .........covvennn. 21
PITLATRINEWITHSLAB .......... 22
PIT LATRINE WITHOUT SLAB/
OPENPIT ... .. ciiiiiiiiinie, 23
COMPOSTING TOILET  .............. 3
BUCKET TOILET ................... 41
HANGING TOILET/HANGING
LATRINE .. .oiiii e 51
NO FACILITY/BUSH/FIELD  .......... 61  |—s111
OTHER 96
(SPECIFY}
109 Do you share this toilet facility with other households? YES i e 1
NO e 2 F—11
110 How many households use this toilet facility? NO. OF HOUSEHOLDS
IFLESSTHAN10 .......... Ej
10 OR MORE HOUSEHOLDS  ........ 95
DONT KNOW 98
111 Does your household have: (5)
YES NO
Electricity? ELECTRICITY .............. 1 2
A radio? RADIO ....iiiiiin i 1 2
A television? TELEVISION .............. 1 2
A mobile telephone? MOBILE TELEPHONE  ...... 1 2
A non-mobile telephone? NON-MOBILE TELEPHONE 1 2
A refrigerator? REFRIGERATOR .......... 1 2

[ADD ADDITIONAL ITEMS. SEE FOOTNOTE 5]
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NO. QUESTICNS AND FILTERS CODING CATEGORIES SKIP
112 What type of fuel does your househeld mainly use ELECTRICITY ...ttt 01
for cooking? PG e e 02 115
NATURALGAS ... ....oooiiiinnine. 03
BIOGAS ... ... ......iiiiiaiiil 04
KEROSENE ...............coivven 05
COAL,LIGNITE .. .iiviiiiniinnne, 06
CHARCOAL ....................... 07
WOOD ...t 08
STRAW/SHRUBS/GRASS  ............ 09
AGRICULTURALCROP .............. 10
ANIMALDUNG  .........cciieennnn, 1"
NO FOOD COOKED
INHOUSEHOLD ................... 95 b— 117
OTHER 96
(SPECIFY)
113 In this household, is food cooked on an open fire, an open OPENFIRE ... .ciiivniinnnninnns 1
stove or a closed stove? OPENSTOVE ......ovviiiviniiaannns 2
CLOSED STOVE WITH CHIMNEY ...... 3
115
OTHER [ }
(SPECIFY)
114 Does this (fire/stove) have a chimney, a hood, or CHIMNEY ... ... i 1
neither of these? ) HOOD ...ttt 2
NEITHER ... ..oiiiiiiiiiiiiinn 3
115 Is the cooking usually done in the house, in a separate INTHEHOUSE ..........cciivuennnn 1
: building, or outdoors? INASEPARATEBUILDING  .......... 2
OUTDOORS . .iviiuiiiiiiiiinennnn 3 17
OTHER 6
(SPECIFY)
116 . Do you have a separate room which is used as a kitchen? YES L 1
NO i e e 2
17 MAIN MATERIAL OF THE FLOOR. {4) NATURAL FLOOR
: EARTH/SAND  .......ovviiinnnnn. 1
RECORD OBSERVATION. DUNG ..ottt 12
RUDIMENTARY FLOOR
WOOD PLANKS  ......ooiivinnn.. 21
PALM/BAMBOO  ................. 22
FINISHED FLOOR
PARQUET OR POLISHED
WOOD ... 31
VINYL OR ASPHALT STRIPS  ...... 32
CERAMICTILES  ................. 33
CEMENT ... iiiiiiiiiiinnanan 34
CARPET ...ttt iiiiaiienanns 35
OTHER 96
(SPECIFY)
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NO. QUESTIONS AND FILTERS CODING CATEGORIES SKIP
118 MAIN MATERIAL OF THE ROOF. (4) NATURAL ROOFING
NOROOF ... oo 1
RECORD OBSERVATION. THATCH/PALMLEAF .............. 12
SOD . 13
RUDIMENTARY ROCFING
RUSTICMAT ... .................. 21
PALM/BAMBOO 22
WOOD PLANKS 23
CARDBOARD 24
FINISHED ROOFING
L 31
WOOD 32
CALAMINE/CEMENT FIBER ........ 33
CERAMICTILES ...........ovvinnnn 34
CEMENT ...ttt iiiinen, 35
ROOFING SHINGLES .............. 36
OTHER 96
(SPECIFY)
119 MAIN MATERIAL OF THE EXTERIOR WALLS. {4) NATURAL WALLS
NOWALLS ..........ciiiiiieni.nn 11
RECORD OBSERVATION. CANE/PALM/TRUNKS  ............ 12
DIRT i 13
RUDIMENTARY WALLS
BAMBOO WITH MUD 21
STONE WITH MUD 22
UNCOVERED ADCBE 23
PLYWOOD  ................ .. 24
CARDBOARD .. .......ccovivnnnn. 25
REUSEDWOOD  ..........c.onnnn 26
FINISHED WALLS
CEMENT .. .......ccovvnunn 31
STONE WITH LIME/CEMENT 32
BRICKS ... i, 33 '
CEMENTBLOCKS ................. 34
COVEREDADOBE  .............. 35
WOOD PLANKS/SHINGLES  ........ 36
OTHER 96
{SPECIFY)
120 How many rcoms in this household are used for
sleeping? ROOMS ........cooiiiioitt,
121 Does any member of this household own:
YES NO
A watch? WATCH ............ciiunt. 1 2
A bicycle? BICYCLE .......... ..., 1 2
A motorcycle or motor scooter? MOTORCYCLE/SCOOTER ... 1 2
An animal-drawn cart? ANIMAL-DRAWN CART ...... 1 2
A car or truck? CARTRUCK .............. 1 2
A boat with a motor? BOAT WITHMOTOR ........ 1 2
122 Does any member of this household own any agriculturat YES Lt e e e 1
land? NO 2 |—124
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NO. QUESTIONS AND FILTERS CODING CATEGORIES SKIP
123 How many hectares of agricultural fand do members
of this household own? HECTARES .................
95 ORMORE HECTARES ............ 95
DONTKNOW . ... ... oae, 98
124 Does this household own any livestock, herds, YES ittt i e 1
other farm animals, or poultry? NO i e e 2 | 126
125 How many of the following animals does this household
own? {6)
IF NONE, ENTER '00".
IF MORE THAN 95, ENTER '95".
IF UNKNOWN, ENTER '98'.
Cattle? clelris
i b &g’%_ »
Milk Gows or bulls? e and:shouigb
mitted i counties:
Horses, donkeys, or mytés?
Goats?
Sheep?
Chicken:
126 Does apfy member of this household have a bank account? YES i e 1
NO e 2
Does your household have any mosquito nets that YES oo s 1
can be used while sleeping? NO e i e, 2 |—138
How many mosquito nets does your household have?
NUMBEROFNETS .................

IF 7 OR MORE NETS, RECORD '7".

99



SECTION 8. HUSBAND'S BACKGROUND AND WOMAN'S WORK

NO. QUESTIONS AND FILTERS CODING CATEGORIES SKIP
801 CHECK 601 AND 602:
CURRENTLY FORMERLY I 803
MARRIED/ MARRIED/ NEVER MARRIED
LIVING WITH LIVED WITH AND NEVER [ 807
A MAN A MAN LIVED WITH A MAN
802 How old was your husband/partner on his last birthday?
AGE IN COMPLETED YEARS
803 Did your {last} husband/partner ever attend school? YES ..o 1
NO e 2 |—806
804 What was the highest level of school he attended: PRIMARY ... i 1
primary, secondary, or higher? {1) SECONDARY
HIGHER .............iiiinnniin,
DON'T KNOW —» 806
805 What was the highest (grade/fform/year) he completed at
that level? {1) GRADE ................
DON'T KNOW
806 | CHECKS801:
CURRENTLY MARRIED/ FORMERLY MARRIED/
LIVING WITH A MAN l: LIVED WITH A MAN F:I
What is your husband's/partner's What was your {last) husband's/
occupation? partner's occupation?
That is, what kind of work does That is, what kind of work did he
he mainiy do? mainly do?
807 Aside from your own housework, have you done any work YES ..o 1 [—>811
in the last seven days? NO i e i i 2
808 As you know, some women take up jobs for which they are paid
in cash or kind. Others sell things, have a small business or
work on the family farm or in the family business. YES o i 1 [~—>811
In the last seven days, have you done any of these things NO i i e 2
or any other work?
809 Although you did not work in the last seven days, do you have
any job or business from which you were absent for leave, YES i e 1 [—>8n
illness, vacation, maternity leave or any other such reason? NO ... 2
810 Have you done any work in the last 12 months? YES o 1
NO 2 |—818
811 What is your occupation, that is, what kind of work do you mainly
do?
812 CHECK 811:
WORKS IN DOES NOT WORK M
AGRICULTURE l:} IN AGRICULTURE 814
813 Do you work mainly on your own land or on family land, or do you OWNLAND .............oovuunn 1
work on land that you rent from someone else, or do you work on FAMILYLAND ..........cccvuiianns 2
someone else's land? RENTEDLAND  ..........couenn. 3
SOMEONE ELSE'SLAND .......... 4
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NO. QUESTIONS AND FILTERS CODING CATEGORIES SKIP

814 Do you do this work for a member of your family, for someone FOR FAMILY MEMBER ............
else, or are you self-employed? FORSOMEONEELSE  ............

SELF-EMPLOYED ............

815 Do you usually work at home or away from home? HOME ...t

AWAY i
816 Do you usually work throughout the year, or do you work THROUGHOUT THE YEAR ..........
seasonally, or only once in a while? SEASONALLY/PART OF THE YEAR
ONCEINAWHILE ................
817 Are you paid in cash or kind for this work or are you not paid at all? CASHONLY .........ciiiiiiannn
CASHANDKIND .......ccovvuiiunnn
INKINDONLY ....vviiiiiiinnnnnnnn
NOTPAID ..ottt
818 CHECK 601:
CURRENTLY
MARRIED/LIVING NOT IN UNION r__]
WITH A MAN P 827
819 CHECK 817:
CODE10R 2 |
CIRCLED l: OTHER 822

820 Who usually decides how the money you earn will be used: RESPONDENT  ...........ccvvune.
mainly you, mainly your husband/partner, or HUSBAND/PARTNER ..............
you and your husband/partner jointly? RESPONDENT AND

HUSBAND/PARTNER JOINTLY
OTHER
{SPECIFY}

821 Would you say that the money that you earn is more than what MORETHANHIM ..............c..t.
your husband/partner eams, less than what he eamns, LESSTHANHIM .............c.....
or about the same? ABOUTTHESAME ................

HUSBAND/PARTNER DOESN'T
BRING IN ANY MONEY .......... — 823
DONTKNOW ... ....iiiiniinnnnnn

822 Who usually decides how your husband's/partner's earnings RESPONDENT  ......ciiiuieninan .
will be used: you, your husband/partner, or you and your HUSBAND/PARTNER ..............
husband/partner jointly? RESPONDENT AND

HUSBAND/PARTNER JOINTLY
HUSBAND/PARTNER HAS
NOEARNINGS ................
OTHER
(SPECIFY)
823 Who usually makes decisions about health care for yourself: RESPONDENT =1
husband/partner, you and r husband/partner HUSBANDIPARTNER = 2
you, your husband/partner, you and your husband/partne! RESPONDENT & HUSBAND/PARTNER JOINTLY =3
jointly, or someone eise? SOMEONE ELSE = 4
OTHER =6
1 2 3 4

824 Who usually makes decisions about making major
household purchases? 1 2 3 4

825 Who usually makes decisions about making purchases
for daily household needs? 1 2 3 4

826 Who usually makes decisions about visits to your family
or relatives? 1 2 3 4
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