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ABSTRACT 
Background 

The Cox proportional hazards regression model has become the most used tool in the analysis 

of censored survival data. However, some features of the Cox model may cause problems for 

the analyst or an interpreter of the data. They include the restrictive assumption of 

proportional hazards for covariate effects, and “loss” (non-estimation) of the baseline hazard 

function induced by conditioning on event times. Compared with Cox Proportional Hazard 

model, parametric models are different in the way they exploit the information contained in 

the data.  Parametric models specify how the hazard varies over time (hazard shape), which 

may provide insights into and guidance on how best to compare outcomes. This study 

compares the goodness of fit of Cox proportional hazard model and parametric survival 

models in modelling the household environmental and social economical determinants of 

under-five child mortality  

Methods 

The study used the 2010 Malawi Demographic Health survey data. The Cox Proportional 

hazard model was used and the proportional hazard (PH) assumption was assessed using both 

the graphical method and by adding time-dependent covariate in the Cox model. Good-ness 

of fit of the Cox PH model was also assessed using Cox Snell residuals. The parametric 

proportional hazard as well as accelerated failure time models was also used. The Weibull, 

lognormal, log-logistic, exponential and Gompertz model were fit and to find the most 

appropriate model, these models were compared using Akaike Information Criterion (AIC) 

and the goodness of fit for all the parametric models was assessed using Cox-Snell residuals.  
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Results 

The Cox Proportional hazard model violated the assumption of proportionality and was not 

fitting the data well. The lognormal model was found to fit the data well and since this model 

is expressed in terms of accelerated failure time model, the violation of the proportion 

hazards assumption was overcome. Mother education, father education, house hold size, 

source of cooking fuel, type of toilet facility and wealth index are found to be significantly 

associated with child mortality. On the other hand, area of residence, source of water and 

access to electricity are found to be not significantly associated with child mortality. 

 

Conclusion 

The results obtained from the Cox PH model are not as effective as those obtained from the 

parametric AFT model since the PH assumption was found to be violated in the Cox PH 

model. Log-normal AFT model is found to be the most appropriate parametric model to be 

used in the analysis of child survival. Hence, researchers in child mortality using survival 

analysis can use the log-normal model as this will give them the more accurate and efficient 

results.  

 

Key words: under-five mortality, Cox-Snell residuals, Cox proportional hazard, Weibull 

distribution, log-normal distribution, log-logistic distribution, Gompertz distribution, 

exponential distribution. 
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Chapter 1:  Introduction 

1.1 Background  

The Cox proportional hazards regression model has become the most used tool in the 

analysis of censored survival data (Moran 2002). Researchers in medical science often 

tend to prefer semi parametric models instead of the parametric models because the 

relationship between covariates and the hazard can be estimated without having to 

make assumptions about the nature and shape of the baseline hazard rate. However, 

some features of the Cox model may cause problems for the analyst or an interpreter 

of the data. They include the restrictive assumption of proportional hazards for 

covariate effects, and “loss” (non-estimation) of the baseline hazard function induced 

by conditioning on event times. A review of survival analysis in cancer journals 

reveals that only 5% of all studies using the Cox PH model considered the underline 

assumption (Altman et al., 1985). Where PH assumption is not met, it is improper to 

use standard Cox PH model as it may entail serious bias and loss of power when 

estimating or making inference about the effect of a given prognostic factor on 

mortality (Allison 1995). 

Compared with Cox Proportional Hazard model, parametric models are different in 

the way they exploit the information contained in the data.  Parametric models specify 

how the hazard varies over time (hazard shape), which may provide insights into and 

guidance on how best to compare outcomes (Cleves 2004).  

Recently, AFT models as parametric models have attracted considerable attention, 

because not only they do not need PH assumption but also thanks to availability of 
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standard methods such as Maximum Likelihood (ML), parameter estimation and 

testing can be done readily (Klien 1997). 

When survival time has a specific statistical distribution, the statistical power of 

parametric survival models is higher than nonparametric or semi-parametric survival 

models. The exponential, Gompertz, Weibull, log-logistic, and lognormal are among 

parametric distributions commonly used for studying survival time analysis. Survival 

estimates obtained from parametric survival models typically yield plots that are more 

consistent with a theoretical survival curve (Kleinbaum 2005). 

 

Parametric accelerated failure time (AFT) models provide an alternative to the PH 

model for statistical modelling of survival data (Wei, 1992). Unlike the PH model, the 

AFT approach models survival times directly and generates a summary measure that 

is interpreted in terms of the survival curve (Hutton and Monaghan, 2002).  

Since recently AFT models have not been used very often and the few usage of these 

models are found in kidney transplant studies (Saint-Marcoux 2005).  Based on our 

knowledge, it has not been used to recognize the prognostic factors of under-five 

mortality in Malawi so far. 

 

In this study, the model performance of the Cox proportional hazard model was 

compared with that of the parametric survival models like Weibull, Gompertz, log-

normal, exponential and Log-logistic models which are used in modelling the 

household environmental and social economical determinants of under-five child 

mortality in Malawi. The results are expected to assist researchers in child mortality to 

get insight into the suitable model to use. 
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Child survival is a function of availability and access to basic needs to support life at 

both individual, household and neighbourhood levels (WHO 2004). Malawi is on 

track to achieve the millennium Development Goal (MGD #4) on reducing child 

mortality. The 2006 Malawi multiple Indicator Cluster Survey (MICS) showed that 

there was a sharp decline in the infant and under-five mortality rates, from 104 and 

189 per 1000 live births respectively in 2000 to 72 and 122 in 2006. They attributed 

the decline to sustained high coverage of immunisation and vitamin A 

supplementation, elimination of neonatal tetanus, malaria control activities, and 

increased rates of exclusive breastfeeding and access to safe drinking water. Although 

accurate information on cause of death is lacking, the leading cause of under-five 

mortality in Malawi is neonatal conditions, pneumonia, diarrhoea, malaria, AIDS and 

malnutrition (UNICEF Malawi 2010). 

The U.N. report (2006) indicated that, Malawi is faring better than many of its 

counterparts in addressing infant mortality despite its existence in the sub-Saharan 

Africa which is regarded as the most dangerous place in the world for new born. 

According to the 1992, 2000 and 2004 Malawi demographic and Health Surveys, 

infant mortality rate has been steadily decline in Malawi from a very high level of 134 

in 1992 to 69 in 2006. Though there is this decline, under-five mortality is still high. 

Children are exposed to serious health risks from the environmental hazards. 

Environmental risk factors are most often neglected and yet they are playing a great 

role in threating the lives of under-five children. These environmental factors are 

particularly influenced by adverse social and economic conditions, particularly 

conflict, poverty and malnutrition. At least 3 million children under the age of five die 

each year due to environment-related diseases. Acute respiratory infections annually 
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kill an estimated 2 million children under the age of five. As much as 60 per cent of 

acute respiratory infections worldwide are related to environmental conditions. 

Diarrhoeal diseases claim the lives of nearly 1.5 million children every year. Eighty to 

90 per cent of these diarrhoea cases are related to environmental conditions, in 

particular, contaminated water and inadequate sanitation. (WHO 2010) 

Environmental risks to children vary from region to region. Children in many 

countries still face the major traditional environmental hazards, including unsafe 

water, lack of sanitation and contaminated food, injuries, indoor air pollution and use 

of solid fuel, outdoor air pollution and exposure to a myriad of toxic heavy metals, 

chemicals and hazardous wastes that may be brought home from work place. 

However, other children live in adverse environment that are vastly different from 

those of generations ago. In addition to the traditional environmental hazards, due to 

rapid changes in economic structures, technologies and demography, new or modern 

environmental hazards have appeared or been recognized, such as increased use of 

radiation. These may be linked to global challenges such as uncontrolled urbanisation, 

industrialisation in developing countries, ecosystem degradation, and the impacts of 

climate change (Mutunga, 2004). 
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1.2Literature review 

1.2.1. Causes of Infant Mortality  
 

There are several causes of under-five children deaths. Figure 1shows the major 

causes of under-five children deaths. Apart from the one indicated in the chart, there 

are some environmental and socio- economic factors that also affect child survival. 

These have been highlighted in the following discussions.  

 

Source: World Health Statistics 2011, WHO 

 

Figure 1Major causes of death in neonates and under five children globally-2008 

Mutunga (2004) argues that causes of infant mortality are multi-factorial, especially in 

developing countries, where there are great variations between social, economic and 

demographical groups of people even inside one country. Thus, in determining infant 

mortality one must take into account this diversity.  
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A three-tier model of causes of child mortality in developing countries was first put 

forward by Millard et al. (1989), as cited in Espo (2002) which mentioned three layers 

of causes as proximate, intermediate and ultimate. The proximate causes included the 

immediate biomedical conditions that result in death and typically involve the 

interactions of malnutrition and infection. Many public health programmes have 

addressed the proximate causes in an attempt to improve child health, for instance, 

through immunization campaigns. The intermediate layer includes child care practices 

and other behaviour that increases the exposure of children to causes of death on the 

proximate tier. Specific patterns that increase exposure to proximate causes include 

breast feeding habits, health-seeking behaviour etc. The ultimate tier encompasses the 

broad social, economic, and cultural processes and structures that lead to the 

differential distribution of basic necessities like food, shelter, and sanitation. The 

ultimate tier thus forms the context of causes located on the other tiers. In developing 

countries, mortality rates are influenced by socio-economic, demographic and 

environmental variables (Mosley and Chen 1984). 

 

 Mortality and its converse indicator, life expectancy are among the most important 

measures of well-being and development in poor countries. It is particularly important 

to analyse the determinants of child mortality in poor countries such as Malawi since 

child mortality has an overwhelming influence on life expectancy.  

Several household environmental and socio-economic characteristics make children 

more vulnerable to the attack of various diseases. These determinants usually involve 

education of the parents, income or wealth situation of the household, access to water 

and sanitation services and access to health services. In this study we will specifically 
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examines how infant and child mortality is related to the household's environmental 

and socio-economic characteristics, such as mother's education, source of drinking 

water, Type of toilet  facility, type of cooking fuels, wealth index, access to 

electricity, partner education, area of residence, and Household size. 

1.2.2. Models in the analysis of child mortality 

Cox PH models the relationship between explanatory variables and time to event. In 

the analysis of child mortality, length of time lived or survival time is an important 

indicator, so survival models need to be used when modelling child mortality. There 

are several models which have been used in the analysis of child mortality where Cox 

Proportion hazard model has been used popularly because its form is flexible enough 

to allow time-dependent covariates as well as stratification. There are few studies 

which have employed parametric models and most of them used Weibull because it 

can be presented in both PH and AFT metric hence can be used to estimate both 

relative rates and relative extension in survival time (Kelvin J, 2002) and others 

choose Weibull without any particular  reasons (Mutunga, 2004). 

 

Child mortality has so far been analysed using different models classes. Table 1 gives 

different models that have been used in the analysis of child mortality and their 

findings. The name of the author, the year of publication, the model used in the 

analysis, the data sources and the finding from the study are all included in the table. 

From the table, the commonest determinants of child mortality were wealth index, 

Mother education, partner education, birth interval, sanitation facility, source of 

water, access to electricity, infant immunization,  area of residence, maternal age, 

multiple birth, and household size.  



 

8 
 

Low levels of education for the mother or the father, higher mortality rate are 

experienced in low income households. The mothers and fathers level of education is 

strongly linked to child survival. Higher levels of education attainment are generally 

associated with lower mortality rates. Safe source of drinking water has negative 

significant effects on child mortality risk. Those household using safe source of water 

like tapped water had lower risk of child mortality as compared to those households 

using unsafe water like water from the Well. The same applies for sanitation, where in 

most cases access to a flush toilet or a ventilated improved pit latrine was associated 

with lower mortality rate. Similarly, urban areas have more advantages and therefore 

better child survival prospects. The patterns of mortality by maternal age and birth 

order were typically U-shaped. Children born to both relatively old and young women 

have higher mortality rates than others. In this case the effect of maternal age at birth 

on infant mortality rate were biological i.e. it depends on reproductive maturity. Less 

child mortality risk were also experienced in children who were immunised. Higher 

child survival prospects were found in small households as compared to larger 

households.
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Table 1 Models in the analysis of under-five child mortality(UV=Univariate and MV=multivariate) 

Author Title(Data sources):Outcome Model class Results/Factors associated with increased risk of child 
mortality 

Mturi A.J. &Curtis 
S.L(1995) 

Determinants of infant and child 
mortality in 
Tanzania(1991/92TDHS Data) 
Outcome: Hazard ratio 

Cox PH Hazard model 
(maternal and 
socioeconomic factors 

Mortality risk at age 1-59 months was significantly associated 
with partner’s education and zone of residence. Uneducated 
partners faced increased risk of child mortality. 

Zerai(1996) Socio-economic determinants of 
infant mortality in Zimbabwe(1988 
ZDHS Data) 
Outcome: Hazard ratio 

Cox regression model Women’s average education level in their community exerts a 
greater influence on infant survival. Poor survival prospects 
are experienced in communities with low women average 
education levels. 

Manda(1996) Relationship between infant and 
child mortality and maternal factors 
in Malawi (1992 MDHS data) 
Outcome: Hazard ratio 

Cox regression models Birth interval and maternal age affects child mortality. 
Children born to both relatively old and young women have 
higher mortality rates than others. 

Kembo and 
Ginneken(2009) 

Determinants of infant and under-
five mortality in Zimbabwe (used 
2005-06 Zimbabwe DHS data) 
Outcome: Hazard ratio 

MV proportional 
hazard models 

Birth of order 6+ with short preceding interval had the highest 
risk of infant mortality 
Social economic variables did not have a distinct impact on 
child mortality 

Uthman 
&Mubashir(2008) 

Maternal determinants of child 
mortality in Nigeria(using 2003 
Nigeria DHS data) 
Outcome: Hazard ratio 

UV &MV survival 
regression models with 
weibull hazard function 

Maternal education and household asset index was associated 
with lower risk of infant mortality. Multiple births were 
strongly negatively associated with lower risk of infant 
survival. Children from uneducated mothers and poor 
households had increased risk of child mortality. 

Mutunga(2007) Environmental determinants of 
child mortality in Kenya(using 2003 
KDHS) 
Outcome: Hazard ratio 
 

Cox PH models 
(The study used 
socioeconomic, 
Demographic, and 
Environmental 
variables) 

Children born from youngest mothers and oldest women 
experience high risk due to biological factors. 
Better survival prospects were found in children born in 
wealthier families, household with electricity, household with 
access to safe drinking water and sanitation facilities, Those 
using less polluting fuels for cooking, and larger households. 
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Table 1 Models in the analysis of child mortality ;UV=Univariate and MV=multivariate (cont.) 

 

 

Author Title(Data sources):Outcome Model class Results/Factors associated with increased risk of child 
mortality 

 
Mazbahul G. 
&Tashina K.(2009) 
 

Examining the trend and annual rate of 
reduction in infant from 1998-2007 and 
correlates causal factors based on data 
from statistical year book of Bangladesh 
2008 and sample vital registration system 
2007 
Outcome: Risk rate 

Log-log specified 
ordinary least square 
and simultaneous 
quantile regression 
models 

Infant immunization was the most significant factor that 
reduces infant mortality. Access to electricity, household 
with electricity had decreases infant mortality rates. 

Mojekwu & Joseph 
Mnamdi(2012) 

Environmental daterminants of child 
mortality in Nigeria(2008 NDHS) 
Outcome: Risk rate 
 

Principal component 
analysis as a data 
reduction technique 
with Varimax rotation 

Better survival prospects were found in home with high 
income, household that have access to immunization, those 
with sanitation facilities and those using low polluting fuels 
as their main source of cooking. 

Raheem Usman A. 
&Segun-Agboola, 
B.T,(2009) 

Exploring  the social and environmental 
determinants of child health in Ilorin, 
Nigeria 
Outcome: Risk rate 

Multiple logistic 
regression model 

The study concluded that Health of children was 
considered in a typical urban Africa and residential quality 
as epitomised by availability of environmental services like 
kitchen, bathroom and toilet were more determinant of 
child health 

Merimaaria V. & 
Teija K. (2000) 

Antanatal and perinatal predictors of 
infant mortality in rural Malawi (used a 
cohort of 733 live born infants 
Outcome: Relative risk  

UV and MV analysis 
used to determine 
relative risk 

HIV epidemic was an important but not the main 
determinant of infant mortality. Maternal factors were the 
main determinants. 
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Table 1 Models in the analysis of child mortality; UV=Univariate and MV=multivariate (cont.)

Author Title(Data sources):Outcome Model class Results/Factors associated with increased risk 
of child mortality 

Halaabou-ali(2002) 
 

The effect of water and 
sanitation on child mortality in 
Egypt(used 1995 DHS data) 
Outcome: risk rate 

Three part model specification  
comprising descrete choice 
and transition models 

Access to municipal water decreases the risk and 
sanitation was found to have a more pronounced 
impact on mortality than water 

Cornelia K. and Ingo 
P.(2011) 

Behavioural factors as emerging 
main determinants of child 
mortality in middle income 
countries: a case study of 
Jordan(2007 Jordan DHS data) 
Hazard rate: Risk rate 

Logit model 
(biological, birth order, birth 
interval, breastfeeding, access 
to drinking water were some of 
the variables) 

They observed higher mortality rates among 
infants and children who lack access to either safe 
drinking water or improved facilities. 

Andreas J. Sian F.(2006)  Child mortality in rural 
Malawi(used 2000-2006 
demographic surveillance 
system data in northern Malawi 
Risk rate: Relative risk 

Poisson regression models 
(variables used are parental 
education, maternal factors) 

Found loss in the usual gap in survival between 
the poor and the less poor because the less poor 
have been disproportionately affected by HIV 
rather than because of relative improvement in the 
survival of the poorest. 

Sudhanshu H (2008) Child mortality in the eastern 
and southern Africa (used DHS 
for  Malawi (1997-2004), 
Mozambique (1997-2003), 
Tanzania (1996-2004) and 
Zambia (1992-2001)) 
 

MV regression model 
(The study used birth size, 
breastfeeding status, water 
source, and sanitation)  

The largest protective factors found were parity, 
birth spacing and to a lesser degree household 
wealth. 
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1.2.3. Under-five children mortality studies 
 

This section presents in more detail several studies that have been done in finding the 

factors that affect child mortality using various statistical methods. 

In 1964, Bourgeois-Pichat identified two types of factors ‘endogenous’ and 

‘exogenous’ that affect infant mortality. Exogenous factors of infant mortality are 

dependent on environment in which an infant is exposed and include deaths to infants 

due to infections, parasite and respiratory diseases. Such causes normally occur in the 

post-neonatal period (1 to 11 months of age of infant) and they are easier to control. 

On the other hand, endogenous causes of mortality are more biological in nature and 

include deaths due to congenital malformations and birth process. They occur in the 

neonatal period (less than 1 month of age of infant) and are rather difficult to control. 

Gandotra and Das (1988) later categorised the underlying factors behind the 

immediate causes of infant deaths into five broad groups: demographic factors, socio-

economic factors; environmental, sanitation and hygienic factors; nutrient availability 

factors; and medical care factors.  

Pandey et.al. (1998) while analysing the NFHS-1 data considered child’s year of 

birth, child’s sex, mother’s age at child birth, residence, mother’s literacy, religion-

caste/tribe membership, mothers exposure to mass media, availability of toilet facility, 

type of cooking fuel and ownership of goods scores as the covariates of infant 

mortality. 

The social economic variables that have been used in previous as well as in this study 

include parental education levels, type of place of residence (urban/rural), Access to 

electricity, wealth status and household size. Socioeconomic variables as well as 
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household environmental variables play a major role in determining the survival of a 

child. 

The 2004 MDHS data indicated that urban mortality rates are generally lower than 

rural rates; the under-five mortality rate is 116 per 1,000 in urban areas compared to 

164 per 1,000 in rural areas. The MDHS compared the three regions in Malawi, and 

the Northern Region was found to have lower under-five mortality (120 per 1,000 live 

births), than either the Central (162 per 1,000) or the Southern Regions (164 per 

1,000). Similarly, the infant mortality rate was lowest in the Northern Region (82 per 

1,000), compared with either the Central Region (90 per 1,000) or the Southern 

Regions (98 per 1,000). These regional differences in mortality were also observed in 

the 1992 MDHS and the 2000 MDHS. The 2004 MDHS shows a relationship between 

mother’s education and child survival as the 2000 MDHS. For every age interval, 

higher levels of education are generally strongly associated with lower mortality risks. 

The same is true for the wealth index. 

Mturi, and Curtis (1995) investigated the determinants of infant and child mortality in 

Tanzania using the 1991/92 Tanzania Demographic and Health Survey. A hazards 

model was used to assess the relative effect of the variables hypothesized to influence 

under-five mortality. The study showed that there was a remarkable lack of infant and 

child mortality differentials by socioeconomic subgroups of the population, which 

may reflect post-independence health policy and development strategies. Mortality 

risk at age 1-59 months was significantly associated, partner's education, and zone of 

residence.  

Zerai (1996) examined socio-economic and demographic variables in a multi-level 

framework to determine conditions influencing infant survival in Zimbabwe. He 
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employed Cox regression analysis to the 1988 Zimbabwe DHS data to study 

socioeconomic determinants of infant mortality. The unique finding was that 

women’s average educational levels in their community exert a greater influence on 

infant survival than the mother’s educational level. 

Manda (1999) used data from the 1992 DHS in Malawi to study the relationship 

between infant and child mortality and birth interval, maternal age at birth and, birth 

order, with and without controlling for other relevant explanatory variables. He also 

investigated the direct and indirect (through its relationship with birth intervals) 

effects of breastfeeding on childhood mortality. The study employed proportional 

hazards models. The results show that birth interval and maternal age effects are 

largely limited to the period of infancy. 

Manda further found that as the child increases in age, the influence of social and 

economic variables on the mortality risk is enhanced, and the relationship between 

bio-demographic variables and mortality risk is strengthened. The study further shows 

that breastfeeding status does not significantly alter the effects of preceding birth 

interval length on mortality risk, but does partially diminish the succeeding birth 

interval effect.  

 

Kalipeni (1993) in his paper examines the spatial variation of infant mortality in 

Malawi between 1977 and 1987. Data from the 1977 and 1987 censuses were used in 

simple correlation and forward stepwise regression analysis to explain and/or predict 

the variation and change of infant mortality at district (county) level. The results 

indicated that, at the macro-level, the variation of infant mortality was strongly 

associated with a number of demographic and socioeconomic variables like Age at 

first marriage, total fertility rates. Female literacy rates, number of home craft centres 
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per 10,000 women and females in agriculture (%) were among the most important 

demographic and socioeconomic variables. For example, districts with high levels of 

literacy rates and educational facilities had lower rates of infant mortality. Districts 

with more females engaged in agriculture had higher levels of infant mortality. As a 

result, there are distinct regional differentials due to the inequitable distribution of 

educational opportunities, health care facilities, and non-agricultural activities. But 

even after controlling for these socioeconomic variables, regional differentials in 

infant mortality still persist. They also find that the region in which a district finds 

itself also played a role as far as levels of infant mortality were concerned.  

 

Kalipeni (1993) further estimated several multivariate regressions to show how the 

relationship between region and child mortality changes when controls for other 

factors. To discern how the different variables of interest operate to affect mortality, 

the variables were introduced into the regression in stages. The first model only 

included dummy variables for the region the mother was living in at the time of the 

survey. This establishes regional differentiation of mortality. Due to the vast 

differences in educational infrastructure among the three regions, the second model 

tested whether the regional differentiation was explained by education. The third 

model adds controls for medical and health environment and the final model added 

other socioeconomic controls in attempts to explain away the differential.  

 

The results of the bivariate and regression analyses showed some interesting 

relationships between the regional variation of child mortality and several of the 

variables. Without controls, there was a significant difference in child mortality 

between the North and the South, and between the North and the Centre. But not 
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between the South and the central controlling for education status, the difference 

between the North and the South were insignificant. This suggested that the 

differential in child mortality between the two regions is explained by education. 

 

Kembo and Ginneken (2009) used multivariate proportional hazard models to 

determine the impact of maternal, socioeconomic and sanitation variables on infant 

and under- five child mortality in Zimbabwe. Results showed that births of order 6+ 

with a short preceding interval had the highest risk of infant mortality. Socioeconomic 

variables did not have a distinct impact on infant mortality. Determinants of child 

mortality were different in relative importance from those of infant mortality.  

 

Uthman and Mubashir  (2008) examined the relationship between multiple births and 

infant mortality in Nigeria. They used univariable and multivariable survival 

regression procedure with Weibull hazard function, controlling for child's sex, birth 

order, prenatal care, delivery assistance; mother's age at child birth, nutritional status, 

education level; household living conditions and several other risk factors. Maternal 

education and household asset index were associated with lower risk of infant 

mortality. They concluded that multiple births are strongly negatively associated with 

infant survival in Nigeria independent of other risk factors. Mother's education played 

a protective role against infant death. This evidence suggests that improving maternal 

education may be a key to improving child survival in Nigeria. A well-educated 

mother has a better chance of satisfying important factors that can improve infant 

survival: the quality of infant feeding, general care, household sanitation, and 

adequate use of preventive and curative health services. 
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Mutunga (2007) examined how infant and child mortality is related to the households 

environmental and socio-economic characteristics, such as mother’s education, source 

of drinking water, sanitation facility, type of cooking fuels, and access to electricity. 

A hazard rate framework was used to analyse the determinants of child mortality. 

They applied duration models to the problem of child mortality since this class of 

models straightforwardly accounts for problems like right-censoring, structural 

modelling and time varying covariates which traditional econometric techniques 

cannot handle adequately. In this study, Mutunga found that of the demographic 

variables, children born of the youngest and oldest women experience high risk rates 

of death. All of these are mainly due to biological factors. As for the socio-economic 

variables, better survival prospects were found to exist for children born in wealthier 

families. Lower mortality rates had also been found in households with electricity. 

Household size was negatively related to child mortality, meaning that lower child 

survival prospects were experienced in smaller households. Similarly, environmental 

characteristics of households were found to be significantly related to child mortality. 

Lower mortality rate were experienced in households that have access to safe drinking 

water, those with access to sanitation facilities and those using low polluting fuels as 

their main source of cooking. 

 

Kazembe and Mpetekula (2010) in their study quantifying spatial disparities in 

neonatal mortality used structured additive regression model and found that both fixed 

and spatial effects were associated neonatal mortality. The  results showed that infants 

with birth weight above average (> 2500 grams), born as single tons, born of mothers 

who sought antenatal care and those whose mothers were all associated with lower 

probability of dying in the neonatal period. The effect of being a boy child, first born, 
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born in rural area, and born to mothers who attained primary education was positively 

associated with neonatal deaths. 

 

Mazbahul  and Tashina (2007) examine the trend and annual rate of reduction in 

infant mortality from 1998-2007 time periods and correlates causal factors based on 

different data from Statistical Yearbook of Bangladesh 2008 and Sample Vital 

Registration System 2007. Seven explanatory variables were considered and the log-

log specified ordinary least square and simultaneous quantile regression models were 

employed to investigate and compare the stochastic impacts of these predictors on 

changing infant mortality. Infant immunization was the most effective factor that 

reduces infant mortality especially at lower quantile districts. Most notably, lower 

poverty line implies increasing trend with upper quantile, indicates that districts with 

low infant mortality rate has low effect for any positive rate of change of it. The least 

square as well as simultaneous quantile regression result disclose that share of 

population lived in electricity accessed houses, road density, no. of female per family 

planning personnel has potential and statistically significant impacts on infant 

mortality rate. Likewise, infant mortality decreased with the increased percentage of 

household having television.  

 

Mojekwu and  Nnamdi (2012) in their study  environmental determinants of child 

mortality in Nigeria, used principle component analysis as a data reduction technique 

with varimax rotation to assess the underlying structure for sixty-five measured 

variables, explaining the covariance relationship amongst the large correlated 

variables in a more parsimonious way and simultaneous multiple regression for child 

mortality modelling in Nigeria. For purpose of robustness, a model selection 
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technique was implemented. Estimation from stepwise regression model showed that 

household environmental characteristics do have significant impact on mortality. 

Better survival prospects were found to exist in homes with high income. Lower 

mortality rates were experienced in household that have access to immunization, those 

with sanitation facilities, those with proper refuse and solid waste disposal facilities as 

well as those with good healthy roofing and flouring materials and those using low 

polluting fuels as their main source of cooking. 

 

 Usman. and Agboola (2009) in their paper “exploring the social and environmental 

determinants of child health in Ilorin, Nigeria, used a multiple regression model to 

analyse the nature and degree of explanation offered by each of the variables unsafe 

drinking water and poor sanitation and hygiene’ mother socio-economic 

characteristics. The study found inverse relationship between mother’s socio-

economic characteristics and the health of their children. In this regard, mothers in 

informal occupation were shown to possess 23% likelihood of their children falling 

sick compared to mothers in other categories of occupation(r =0.48). On the other 

hand, children of illiterate mothers had 15.4%likelihood of diarrhoea occurrence than 

children of educated mothers (r = 0.39). In households with large family sizes, the 

likelihood was higher by 16.9% compared to household with smaller family sizes. 

The study concluded that health of children is considered in a typical urban Africa. 

The result shows that residential quality as epitomised by availability of 

environmental services like kitchen, bathrooms and toilet were more determinant of 

child health. 
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Omolaubi (1995) had earlier emphasized that children of educated women, especially 

if the latter had completed secondary education, have much higher survival chances 

than children of illiterate mothers. This is because maternal education works through 

three different pathways. It influences the socio-economic level of household, governs 

mothers’ attitude and influences her behaviour (including health seeking) on issues 

relating to the health of their children. 

 

 Vaahtera and Kulmala(2000), in their study of antenatal and perinatal predictors of 

infant mortality in rural Malawi used  a cohort of 733 live born infant from 

approximately 24 gestation weeks onwards. Univariate analysis was used to 

determine relative risks for infant mortality after selected antenatal and perinatal 

exposures. Multivariate modelling was used to control for potential confounders, The 

HIV epidemic was an important but not the main determinant of infant mortality. The 

infant mortality rate was 136 deaths/1000 live births. Among singleton newborns, the 

strongest antenatal and perinatal predictors of mortality were birth between May and 

July, maternal prim parity, birth before 38th gestation week, and maternal HIV 

infection. Theoretically, exposure to these variables accounted for 22%, 22%, 17%, 

and 15% of the population attributable risk for infant mortality, respectively. 

 

Masangwi  (2010) in their study of Behavioural and environmental determinants of 

child diarrhoea in Chikwawa Malawi, used a Bayesian logistic regression analysis to 

analyse domestic water sources, sanitation and hygiene practice and their impact on 

diarrhoea which is also one of the causes of under-five child death. Results showed 

that children from households with no toilet facilities were more likely to have 

suffered from diarrhoea than those who own such facilities. (Odds ratio: 1.72, 95% 
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CI: 1.18, 2.51). On the other hand, children from households that use private taps 

were less likely to have suffered diarrhoea than those that use public taps (OR=0.16, 

95% CI: 0.08, 0.32). Those where each member use a basin (OR=0.37, 95% CI: 0.20, 

0.70) or running water from a tap (OR=0.10, 95%CI: 0.02, 0.53) for washing hands 

were less likely to have suffered diarrhoea than those that use cups to pour water from 

containers. 

 

Sudhanshu  and Wen (2008) in their study child mortality in the eastern and southern 

Africa, provide an in depth analysis of the micro-level determinants of child survival 

in four eastern and southern Africa (ESA) countries over time: Malawi, Mozambique, 

Tanzania and Zambia. Two of these countries were thought to have made important 

gains in reducing mortality (Malawi and Mozambique), mortality increased in 

Tanzania in the late 1990s but then dropped in the early part of this decade, while in 

Zambia the pattern of child mortality during the 1990s was unclear. Each of these 

countries has two comparable national household surveys (DHS) at least five years 

apart which provide a sufficiently long enough window to observe sustained changes 

if they occurred. For each country they provided three sets of analyses. First, they 

pool the data and estimate survival functions with cohort effects to test whether the 

probability of survival has changed significantly over time. They estimated the change 

in the relative risk of death over time (the death hazard) as well as statistical tests for 

differences over time and by age cohort. Second, they estimated full survival models 

by age group to assess whether there are patterns in the main determinants of child 

survival across the countries. Finally, they quantify the change in child survival over 

the study period that is attributable to each of the variables included in the regression 
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model, thus providing a picture of some of the key drivers of mortality changes in the 

time period being studied. 

 

Cornelia and Ingo (2011) run different logit estimations to allow for different set of 

variables. They concluded that once a country has passed a certain threshold in 

household income, education and access to health care and safe drinking water, 

policies targeting behavioural changes are the most promising for achieving further 

reductions in mortality rates. That is among the household and community 

characteristics, they observed higher mortality rates among infants and children who 

lack access to either safe drinking water or improved facilities.  

 

 Abou-ali (2002) assessed water and sanitation’s impacts on child mortality in Egypt. 

The analysis was conducted using a three-part model specification, comprising 

discrete choice to model the child prospects of dying during the neonatal period. The 

remaining parts uses transition models to model infant and childhood risk of death 

where unobserved heterogeneity is accounted for. The results show that access to 

municipal water decreases the risk and sanitation is found to have a more pronounced 

impact on mortality than water. The results suggest that increasing awareness of the 

Egyptian population relative to health care and hygiene is an important feature to 

decrease child’s mortality risk. Moreover, gender discrimination is found to be of an 

important effect beyond the neonatal period. 

 

Jahn et.al (2010) in their study Child Mortality in rural Malawi, as part of a 

demographic surveillance system in northern Malawi in 2002-6, covering a 

population of 32,000, information was collected on socio-economic status of the 
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households. Deaths were classified as HIV/AIDS-related or not by verbal autopsy. 

Poisson regression models were used to assess the association of socio-economic 

indicators with all-cause mortality, AIDS-mortality and non-AIDS mortality among 

children. There were 195 deaths in infants, 109 in children aged 1–4 years, and 38 in 

children aged 5–15. All-cause child mortality in infants and 1–4 year olds was similar 

in households with higher and lower socio-economic status. In infants 13% of deaths 

were attributed to AIDS, and there were no clear trends with socio-economic status 

for AIDS or non-AIDS causes. For 1–4 year olds 27% of deaths were attributed to 

AIDS. AIDS mortality was higher among those with better built houses, and lowest in 

those with income from farming and fishing, whereas non-AIDS mortality was higher 

in those with worse built houses, lowest in those with income from employment, and 

decreased with increasing household assets. They concluded that in this population, 

since HIV infection among adults was initially more common among the less poor, 

childhood mortality patterns have changed. The usual gap in survival between the 

poor and the less poor has been lost, but because the less poor have been 

disproportionately affected by HIV, rather than because of relative improvement in 

the survival of the poorest. 

 

Mohamad and Ebrahim (2007) compared two survival regression methods – Cox 

regression and parametric models - in patients with gastric adenocarcinomas who 

registered at Taleghani hospital. They retrospectively studied 746 cases from February 

2003 through January 2007. Gender, age at diagnosis, family history of cancer, tumor 

size and pathologic distant of metastasis were selected as potential prognostic factors 

and entered into the parametric and semi parametric models.  Weibull, exponential 

and lognormal regression were performed as parametric models with the Akaike 

Information Criterion (AIC) and standardized of parameter estimates to compare the 
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efficiency of models. The survival results from both Cox and Parametric models 

showed that patients who were older than 45 years at diagnosis had an increased risk 

for death, followed by greater tumor size and presence of pathologic distant 

metastasis. In multivariate analysis Cox and Exponential were similar.  Although it 

seems that there may not be a single model that is substantially better than others, in 

univariate analysis the data strongly supported the log normal regression among 

parametric models and they concluded that it can be lead to more precise results as an 

alternative to Cox. 

 

Kourosh and Mohammad (2008) evaluated the prognostic factors of overall survival 

after haematopoietic stem cell transplant in acute lymphoblastic leukaemia patients 

using accelerated failure time (AFT), Cox proportional hazard (PH) and Cox time 

varying coefficient model. In this study, the predicted power of weibull AFT models 

was superior to Cox PH model and Cox with time varying coefficients. Cox-Snell 

residual show weibull AFT fitted to data better than the other distributions in 

multivariate analysis and they concluded that AFT distribution can be useful tool for 

recognising prognostic factors of overall survival. 

 

From the review of the literature above, it is clear that there are few studies that used 

parametric survival models in determining infant and child mortality in Malawi as 

well as other countries. It is against this background that in this study different 

parametric models have been used and their performance been compared in order to 

find the best fitted model used in determining factors that affect child survival. Our 

results will offer an in-depth use of DHS data and are expected to improve the 

understanding of the mortality situation of under-five children in Malawi. Since the 
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best model has been established, we expect the results to be more accurate, thereby be 

of interest to people working on other studies that analyse child mortality risks in 

Malawi.  

1.3 Problem Statement 

Malawi infant and under-five mortality is still high though there is evidence of a sharp 

decline in the infant and under-five mortality (2006 MICS survey). Accurate 

information on cause of death is lacking, what is mostly known is that the leading 

cause of under-five mortality in Malawi is neonatal conditions, pneumonia, diarrhoea, 

malaria, AIDS and malnutrition (UNICEF Malawi 2010). As such, many studies on 

child mortality have concentrated on disease as the main cause of child mortality. If 

under-five mortality has to be reduced, there is a great need to find all other factors 

that may cause under-five mortality. This will guide as to which interventions to focus 

on in order to reduce child mortality. 

Similarly most child survival studies have employed Cox proportional hazard model. 

If we have to come up with effective and efficient results which can guide policy, 

there is a great need to identify the suitable model which can be used in the analysis 

of child mortality. Hence, the need to compare the performance of Cox PH model and 

parametric models. 

 

1.4  Objectives of the study  

1.4.1 Broad Objective 
The general aim of the study was to compare the performance of Cox Proportional 

hazard model and parametric models like exponential, Weibull, Gompertz, Log-

logistic, and log-normal model in modelling child mortality 
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1.4.2 Specific objectives  
  

1. To identify social economic and household environmental factors that 

influence under-five child mortality using Cox proportion hazard model. 

2. To Identify the best fitting model between parametric and semi parametric 

and among the parametric models. 

3. To identify social economic and household environmental factors that 

influence under-five child mortality using five parametric survival models 

1.5 Justification of the study 
Since children are basic for every development aspect of a country there is a need to: 

identify the best model that determines factors that affect under-five mortality. 

Although the Cox parameter estimations are well known to the researchers in the field 

of medical sciences, the results in accelerated failure times can be interpreted as the 

relative risk that is known to medical scientists. Thus, these parameters can be 

interpreted as factors accelerating or decelerating similarly in the interpretation of 

cox’ hazard ratio.  

 

This study is expected to contribute to methodological innovation in infant and child 

mortality studies in Malawi by introducing parametric survival analysis into child 

mortality modelling. Survival models are the most suited for such analysis because 

they account for problems like right-censoring, and structural modelling which 

traditional econometric techniques cannot handle adequately (Mutunga 2004). 
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The results of this study are expected to shed light on the linkage between the 

household’s environmental status and child mortality, and consequently inform policy 

on the importance of improving households’ environmental and socio-economic 

characteristics in a bid to reduce child mortality. This is in line with the current 

government’s effort of mainstreaming the environment into sustainable development 

planning and commitment to the achievement of the Millennium Development Goals 

1.6. Definitions of terms 

 Neonatal mortality : the rate of dying within the first month of life 

 Infant mortality : The rate of dying between births and the first birthday 

 Child mortality: The rate of dying between exact ages one and five 

 Under-five mortality: rate of dying between birth and the fifth birthday 

 Wealth index: proxy measure of the wealth of households which is based on 

household characteristics, ownership of assets (house ownership, source of 

drinking water, electricity, sanitation facility (toilet), floor material type, roof 

material type etc.) 

 Household: This is a social group of one or more individual members. They 

are usually but not always related. 
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Chapter 2:   Methods and Data sources 

2.1. Data 

The analysis of child mortality used data from the 2010 Malawi Demographic and 

Health survey (MDHS). The 2010 Malawi Demographic Health Survey (2010 

MDHS) was implemented by the National Statistical Office (NSO) and the 

community Health Sciences Unit (CHSU) from June through November 2010. 

2.1.1 Sample design 

The 2010 MDHS sample included 849 clusters: 158 in urban areas and 691 in rural 

areas. A complete listing of households was done in each of the MDHS clusters from 

May to June 2009. A minimum sample size of 950 households was required per 

district to provide an acceptable level of precision for the indicators measured in the 

survey. The survey interviewed a representative sample of 19,967 women aged 

between 15 and 49 years. A two stage stratified sampling design was implemented to 

collect the data. The data were realized through a questionnaire that included 

questions on marriage and reproductive histories of which histories of all birth they 

ever had, area of residence, age of the mother, type of sanitation facilities, whether the 

child is alive or not, age at death and many more were gathered (Appendix 3 shows 

the relevant pages of the questionnaire used in this study). Survival time of each child 

was computed in months, all children whose survival time was less than 60 months 

were classified as under-five deaths. All children above 60 months were censored. 

 

2.1.2. Limitations 
The Data collected using the birth histories in the 2010 MDHS were subject to a 

number of potential errors. First, the data reflect only surviving women age 15-49 

years; no data were available for children of women who died. To the extent that child 
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mortality of surviving and non-surviving women differs substantially and that young 

children of non-surviving women make up a good portion of all young children, the 

mortality indicators derived from the birth history would be biased. 

 

Another possible error is underreporting of events; respondents may forget events that 

occurred in the more remote past. Omission of infants’ deaths may take place, 

especially in cases where deaths occur early in infancy.  There was also a potential of 

forgetting the death of neonates and of those who had born recently due to cultural 

emotional response which does not regard the young baby as having lived. If such 

deaths are selectively reported, consequences will not only be a lower infant mortality 

rate (IMR) and neonatal mortality rate (NNMR), but also a low ratio of neonatal 

deaths to infant deaths. On the other hand, mis- reporting of the date of birth and age 

at death would sometimes result in distortion of the age pattern of death. This may 

affect the final indices obtained because of shifting of ages above or below the cut-

offs for the different mortality categories. Another aspect that affects the childhood 

mortality estimates is the quality of reporting of age at death. Here they just reported 

the age and not month and year or exact date when the child died.  To minimise errors 

in the reporting of age at death, the interviewers were instructed to record the age at 

death in days if the death took place within one month after birth, in months if the 

child died within 24 months, and in years if the child was two years or older. In 

general if ages at death are misreported, it may bias the estimates, especially if the net 

effect of age misreporting results in transference of deaths from one age bracket to 

another. For the purpose of the analysis, the age at death were imputed into months. 
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2.2. Variables considered  
Mosley and Chen (1984) were among the first to study the intermediate biomedical 

factors affecting child mortality, labelled ‘proximate determinants’ They 

distinguished fourteen proximate determinants and categorized them into four groups: 

maternal [fertility] factors, environmental sanitation factors, availability of nutrients 

to the foetus and infant, injuries, and personal illness control factors. 

Independent variables 
Based on the Mosley and Chen (1984) determinants of under-five child mortality 

framework, the independent variables that were studied in this research were:  

Socioeconomic variables: (mother education, Father Education, wealth index, area of   

residence, household size and Access to electricity) 

Household environmental /Sanitation variables: (source of drinking water, toilet 

facility and source of cooking fuel).  

The Response Variable 
The dependent variable that was used in this study is child survival time, which was 

measured as the duration in months starting from birth to death (if event occurred) or 

from birth to the survey date (censored data). 

 

2.2.1 Measurement of variables 
 

Wealth index was calculated by the MDHS on the basis of ownership of household 

assets.  Wealth index had five categories, which are richest, rich, medium, poor and 

poorest. The poor status category was used as the reference category. 
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Mother and partner education, had four categories; no education, primary education, 

secondary education and higher education. In this analysis those with no education 

and with primary education were put in one category and secondary and higher 

education were also recoded in one category. This was done to balance the sample 

size as we have highest education with smallest sample size. 

In this study, households that have either a flush toilet or a pit latrine, whether private 

or shared are regarded as having sanitation as opposed to those without any facility. 

Similarly, households with access to private or public tap water, as well as covered 

well water are considered to have safe water.  

Area of residence had two categories; rural and urban. Similarly, access to electricity 

had two categories those with electricity and those without. Using electricity and 

different kinds of gas were considered as using less polluting fuel. On the other hand 

those using wood, charcoal were regarded as using high polluting source of fuels for 

cooking. The categorical predictor household size had four levels; households with 

two to three members, household with four to five members, household with six to 

seven members and household with eight or more members. And household with two 

to three members was used as a reference category. The variables and codes used in 

the analysis of this study are provided in the Table 2 below. 
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Table 2variable description and codes for categories 

Variable Description Codes/Values for categories 

V025 Type of place of 
Residence 

0= urban*, 1= rural 

highedu Mother education 0 = no or primary education*, 1= secondary or 
Higher 

Fuel Type of cooking fuel 0=Electricity or gas*, 1=firewood or charcoal 

partedu Partner education 0 = no or primary education*, 1= secondary or 
Higher 

Water2 Source of drinking 
water 

0= piped water*, 1=Well water 

Toilet1 Type of toilet facility 0= flush or pit latrine*, 1=no toilet facility 

Hsize Household size 0= 2 to 3 members* 1= 4 to 5 members,  

2= 6 to 7 members, 3=8 to 23 members 

Status Wealth index 0 = poor 1= poor* 2 = medium 3 = rich 4 = 
richest 

elect Access to electricity 0= No*, 1= yes 

Note: * were used as the reference categories) 

2.3 Theoretical Model 

This section describes the statistical models that were used, and have been 

implemented elsewhere, to study infant and child mortality. Section 2.3.1 is dedicated 

to distributional properties of time-to-event data and discusses the concept of survival 

and hazard function. Section 2.3.3 and 2.3.4 discuss the Cox PH and parametric 

approaches, respectively, to modelling the relationship between child mortality and 

the covariate identified. 

This study employed survival analysis. Survival models relate the time that passes 

before some event occurs to one or more covariates that may be associated with that 

quantity. The main concepts of which are the hazard function and the survivor 
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function. The underlying hazard function, often denoted ℎ଴(ݐ), described how the 

hazard (risk) changes over time at baseline levels of covariates; and the effect 

parameters, describing how the hazard varies in response to explanatory covariates. 

The hazard rate (the term was first used by Barlow (1963) is defined as the probability 

per time unit that a case that has survived to the beginning of the respective interval 

will fail in that interval. Specifically, it is computed as the number of failures per time 

units in the respective interval, divided by the average number of surviving cases at 

the mid-point of the interval (Kay R, 2004). 

2.3.1 Survival time distribution 

Let T be a random variable denoting the survival time. The distribution of survival 

times is characterized by any of three functions: the survival function, the probability 

density function or the hazard function. 

The survival function defined as the probability that the survival time is greater or 

equal to t.	  

                                                                                 
                                                                   

(ݐ)ܵ = ܲ(ܶ ≤ ,(ݐ ݐ ≥ 0																																																							(2.1) 

 
 

   The failure function F (t) is given as 

                                                          

(ݐ)݂ = Pr(ܶ ≤ (ݐ = න݂(ݔ)݀,ݔ																																																(2.2)
௧

଴
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where t is the elapsed time since entry into the study (child was born) at time 0 and 

݂(. ) is the probability density function of T. 

Thus, we can express the survival function in terms of the failure function as  

(ݐ)ܵ                                                     = ܶ)ݎ݌ > (ݐ = 1 −  				(2.3)																															(ݐ)ܨ

The survivor function ܵ(ݐ)and the failure function (ݐ)ܨ  are each probability, and 

therefore inherit the properties of probabilities. The survivor function lies between 

zero and one, and is a non-increasing function of t. The survivor function is equal to 

one at the start of the spell (ݐ = 0 ) 

and is zero at infinity. 

Closely related is the concept of hazard rate, which is given as: 

                           
                           ℎ(ݐ) = limఋ௧→଴

୔୰	(௧ஸ்ஸ௧ାఋ௧|்வ௧)
ఋ௧

= ௙(௧)
ଵିி(௧)

= ௙(௧)
ௌ(௧)

.																					(2.4) 

 

There is a one-to-one relationship between a specification for the hazard rate and the 

survivor function, which after some manipulation is given as: 

(ݐ)ܵ                                                                           = exp[−(ݐ)ܪ] 																																						(2.5) 

 

Where 

                                           
(ݐ)ܪ                                                                         = ∫ h(u)du = ln	[s(t) ≥ 0௧

଴  

H(t) is referred to as the cumulative hazard function or integrated hazard function. 
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The important result is that, whatever functional form is chosen for (ݐ) one can derive 

 .and vice versa ( (ݐ)and ℎ (ݐ)݂ and also) from it (ݐ)ܵ

 

2.3.2 Ordinary least squares 
 

Ordinary least squares are used in survival data analysis. However, they cannot handle 

censoring/and truncation, time varying covariates and structural modeling (Stephen 

2005). 

To illustrate the (right) censoring issue, let us suppose that the “true” model is such 

that there is a single explanatory variable,ܺ݅ for each individual 	= 1, . . . ,݊ , who has 

a true survival time of ௜ܶ
∗. In addition, in the population, a higher ܺ is associated with 

a shorter survival time. In the sample, we observe ܶ݅	where ܶ݅	 = ௜ܶ
∗	 for observations 

with completed spells, and ܶ݅	 < 	 ௜ܶ
∗ for right censored observations. 

Suppose too that the incidence of censoring is higher at longer survival times relative 

to shorter survival times. (This does not necessarily conflict with the assumption of 

independence of the censoring and survival processes .it simply reflects the passage of 

time. The longer the observation period, the greater the proportions of spells for 

which events are observed.) 

By OLS, we mean: regress	ܶ݅, or better still ݈݃݋	ܶ݅ (noting that survival times are all 

non-negative and distributions of survival times are typically skewed), on ܺ݅, fitting 

the linear relationship 

log( ௜ܶ) = ߙ + ௜ݔܾ + ݁௜ 

The OLS parameter estimates are the solution tomin௔,௕ ∑ (݁௜)ଶ௡
௜ୀଵ  is the vertical	ොߙ .

intercept; ෠ܾ is the slope of the least squares line. 
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2.3.3. The Kaplan-Meier estimate of the survival function 

The Life table is the earliest statistical method to study human mortality rigorously, 

but its importance has been reduced by the modern methods, like the Kaplan-Meier 

(K-M) method. The K-M estimator for the survival curves is usually used to analyse 

individual data, whereas the life table method applies to grouped data. 

Suppose that r individuals have failures in a group of individuals. 

                                       Let 0 ≤ ⋯ < 	(ଵ)ݐ < ∞  

be the observed ordered death times. Let ݎ௝  be the size of the risk set at 	ݐ௝ , where risk 

set   denotes the collection of individuals alive and uncensored just  before	ݐ௝  , 

Let ௝݀  be the number of observed deaths at	ݐ௝ ,  ݆ = 1, …  ݎ

Then the K-M estimator of (ݐ)ݏ is defined by 

                                                                              መܵ(ݐ) = ∏ 1 − ௗೕ
௥ೕ

௝:௧ೕழ௧  

This estimator is a step function that changes values only at the time of each death. 

2.3.4. The Cox proportional Hazards model 

The Cox proportional hazard model is given by: 

           
                           
                       
ℎ(ݔ|ݐ) = ℎ଴(ݐ)exp	(ߚଵݔଵ + ଶݔଶߚ + ⋯+ 	௣ݔ௣ߚ = ℎ଴(ݐ) exp൫ߚᇱ௫൯																				(	2.6) 
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Where ℎ଴(ݐ) is called the baseline hazard function, which is the hazard function for an 

individual for whom all the variables included in the model are zero. ܺ = ,ଶݔ,ଵݔ … ,   ௣ݔ

is the value of the vector of explanatory variables for a particular individual, and 

ᇱߚ = ,ଶߚ,ଵߚ) …   (௣ߚ,

is the vector of regression coefficients. 

 

The corresponding survival functions are related as follows: 

                                                   S(t|x)=ܵ଴	(ݐ)௘௫௣(∑ ஒ೔௫೔)
೛
೔సభ                                        (2.7) 

This model, also known as the Cox regression model, makes no assumptions about 

the form of  ℎ଴(ݐ) (non-parametric model) but assumes parametric form for the effect 

of the predictors on the hazard (parametric part of model). The model is therefore 

referred to as a semi-parametric model. The beauty of the Cox approach is that this 

vagueness creates no problems for estimation. Even though the baseline hazard is not 

specified, we can still get a good estimate for regression coefficients β, hazard ratios, 

and adjusted hazard curves. 

The measure of effect is called hazard ratio. The hazard ratio of two individuals with 

different covariates x and x* is 

෢	ࡾࡴ                                   (௫	ஒ෡ᇲ)࢖࢞ࢋ	૙࢚ࢎ=
∗௫	ஒ෡ᇲ)࢖࢞ࢋ	૙࢚ࢎ

  =exp(∑β෠ ᇱ (࢞ − ࢞∗	))                                  (2.8) 

This hazard ratio assumes that covariate effects act proportionally on the baseline 

hazard function (the values of the functions when all covariates are set to 0), 

independent of time. This is why this model is called the proportional hazards model. 

The proportional hazard means that the risk of death at any given time for an 
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individual in one group is proportional to the risk at that time for similar individual in 

the other group.  

2.3.5 Partial likelihood estimate foe Cox proportional hazards model 

Fitting the Cox proportional hazards model, we wish to estimate ℎ଴(ݐ) andߚ. One 

approach 

is to attempt to maximize the likelihood function for the observed data simultaneously 

with respect to	ℎ଴(ݐ) and	ߚ. A more popular approach is proposed by Cox [13] in 

which a partial likelihood function that does not depend on ℎ଴(ݐ)  is obtained for	ߚ. 

Partial likelihood is a technique developed to make inference about the regression 

parameters in the presence of nuisance parameters (ℎ଴(ݐ) in the Cox PH model). In 

this section, we will construct the partial likelihood function based on the proportional 

hazards model. 

 

Let ݐଵ , ,ଶݐ …  ௡ be the observed survival time for ݊ individuals. Let the ordered deathݐ	

time of ݎ individuals be ݐ(ଵ) < 	 (ଶ)ݐ < ⋯ <  ൯ be the risk set just(௝)ݐand let ܴ൫ (௥)ݐ

before ݐ(௝) and ݎ௝  for its size. So that ܴ൫ݐ(௝)൯  is the group of individuals who are alive 

and uncensored 

at a time just prior to ݐ(௝). The conditional probability that the	ܫth individual dies at 

 is (݆)ݐ ൯  dies at(௝)ݐgiven that one individual from the risk set on ܴ൫ (௝)ݐ

ܲ(individual	݅ dies at ݐ(݆) | one death from the risk set ܴ(ݐ(݆))	at ݐ(݆)) 

 

=
((௝)ݐ)	at	dies	݅	individual)݌

((௝)ݐ	at	death	One)݌  

=
((௝)ݐ	at	dies	i	individual)݌

∑ ܲ(individual	k	dies	at	ݐ(௝))௄∈ோ(௧(ೕ))
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	≅
ܲ{individual	K	dies	at	൫ݐ(௝), (௝)ݐ + {൯ݐ∆ ⁄ݐ∆

∑ ܲ{individual	k	dies	at	൫ݐ(௝),ݐ(௝) + ൯}௄∈ோ(௧(ೕ))ݐ∆ ⁄ݐ∆
 

=
lim
∆௧!଴

ܲ൛individual	i	dies	at	൫ݐ(௝),ݐ(௝) + ൯ൟݐ∆ ⁄ݐ∆

lim
∆௧!଴

∑ ܲ{individual	k	dies	at	൫ݐ(௝),ݐ(௝) + ൯}௄∈ோ(௧(ೕ))ݐ∆ ݐ∆/
 

=
ℎ௜(ݐ(௝))

∑ ℎ௞(ݐ(௝))௄∈ோ(௧(ೕ))
 

=
ℎ଴(ݐ(௝))exp	(ߚᇱݔ௜(ݐ(௝))

∑ ℎ଴(ݐ(௝))exp	(ߚᇱܺ௞(ݐ(௝))௄∈ோ(௧(ೕ))
 

=
exp	(ߚᇱݔ௜൫ݐ(௝)൯)

∑ exp	(ߚᇱݔ௞(ݐ(௝))௄∈ோ(௧(ೕ)

 

 

Then the partial likelihood function for the Cox PH model is given by 

(ߚ)ܮ = ෑ
exp	(ߚᇱݔ௜൫ݐ(௝)൯)

∑ exp	(ߚᇱݔ௞(ݐ(௝))௄∈ோ(௧(ೕ)

௥

௝ୀଵ

																																										(2.9)												 

 

In which ݔ௜൫ݐ(௝)൯ is the vector of covariate values for individual	݅ who dies at ݐ(௝). 

Note that this likelihood function is only for the uncensored individuals. The partial 

likelihood is valid when there are no ties in the dataset. That means there is no two 

subjects who have the same event time. 

2.4 Parametric PH models  

The parametric proportional hazards model is the parametric versions of the Cox 

proportional hazards model. It is given with the similar form to the Cox PH models. 

The hazard function at time t for a particular individual with a set of p covariates 

,ଶݔ,ଵݔ … ,  :௣ is given as followsݔ



 

40 
 

         

                   
                         
                             
(ݔ|ݐ)ܪ = ℎ଴(ݐ)exp	(ߚଵݔଵ + ଶݔଶߚ + ⋯+ 	௣ݔ௣ߚ = ℎ଴(ݐ) exp൫ߚᇱ௫൯																								(2.10) 

 

      

The key difference between the two kinds of models is that the baseline hazard 

function is assumed to follow a specific distribution when a fully parametric PH 

model is fitted to the data, whereas the Cox model has no such constraint. The 

coefficients are estimated by partial likelihood in Cox model but maximum likelihood 

in parametric PH model.  

Partial likelihood differs from maximum likelihood because it does not use the 

likelihoods for all subjects, it only considers likelihoods for subjects that experience 

the event and it considers subjects as part of the risk set until they are censored 

Other than this the two types of models are equivalent. Hazard ratios have the same 

interpretation and proportionality of hazard is still assumed. A number of different 

parametric PH models may be derived by choosing different hazard functions. The 

commonly applied models are exponential, Weibull or Gompertz model. 

2.4.1 Weibull PH  model 

The generalization of the exponential distribution to include the shape parameter is 

the Weibull distribution. The cumulative distribution function of the Weibull 

distribution is 

  
(ݐ)ܨ                                                                   = 1− exp{−ݐߠఊ} , ݐ > 0																													(2.11) 
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where is the shape parameter and is the scale parameter, and the probability 
density  

function of the Weibull distribution is 

                                                                  
(ݐ)݂                                                       = ఊିଵݐߠߛ exp{−ݐߠ௬} , ݐ > 0																																					(2.12) 

 

The survival function and hazard function of the Weibull distribution are 

(ݐ)ݏ                                                                      = exp{−ݐߠ௬}, 

                                                                     ℎ(ݐ) =  ఊିଵݐߠߛ

respectively 

It is easy to see just how flexible the Weibull distribution can be. When γ=1, the 

Weibull distribution becomes the exponential distribution with θ = λ and the hazard 

rate remains constant as time increases, For 3 ≤ γ ≤ 4, it is close to the normal 

distribution and when γ is large, say γ ≥ 10 it is close to the smallest extreme value 

distribution (Nelson, 1982). When γ > 1 the hazard rate increases as time increases, 

and for γ < 1 the hazard rate decreases. Under the weibull PH model, the hazard 

function of a particular individual with covariates (x1, x2, ...,xp) is given by: 

 
        
     

ℎ(ݔ|ݐ) = ଵݔଵߚ)	ఊିଵexp(ݐ)ߛ	ߠ + ଶݔଶߚ + (௣ݔ௣ߚ =
௬ିଵ(ݐ)ߛߠ	 exp(ߚᇱݔ).																						(2.13) 

 

In this case, the survival time of this child has the weibull distribution with shape 

parameter θ exp(βᇱx) and scale parameter ߛ. Therefore the weibull family with fixed ߛ 

possesses PH property. This shows that the effects of the explanatory variables in the 

model alter the scale parameter of the distribution, while the shape parameter remains 
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constant. The Weibull model nests the exponential model. We used the Weibull 

model to test if the exponential model is appropriate. 

 

2.4.2 Exponential PH model 

The exponential PH model is a special case of the weibull model when y=1. The 

hazard function under this model is to assume that it is constant over time. This implies 

that the conditional ‘probability’ that a child with covariate values ݔ௝ 	 dies given that the 

child survived to the beginning of the interval is constant over time (and that events occur 

according to a Poisson process). In other words, the risk of an event occurring (child 

dying due to environmental factors) is flat with respect to time assuming an exponential 

distribution for survival time, the hazard function is actually constant. Modelling the 

dependency of the hazard rate on covariates entails constructing a model that ensures 

a non-negative hazard rate (or non-negative expected duration time). The exponential 

density function is 

(ݐ)݂ = ߣ for (ݐߣ−)	expߣ > 0                                       (2.14) 

and ݐ > 0 

 

It has a constant hazard 

ℎ(ݐ) =  ߣ

and its survival function is 

(ݐ)ݏ = exp	(−ݐߣ) 

Thus, a large λ implies a high risk and a short survival. Conversely, a small λ 

indicates a low risk and a long survival. This distribution has the memoryless property 

meaning that how long an individual has survived does not affect its future survival 

(Lee, 1992).The exponential distribution is limited in applicability because it has only 



 

43 
 

one parameter, the scale parameter λ. By adding a shape parameter the distribution 

becomes more flexible and can fit more kinds of data. 

 

The exponential model is the simplest of the parametric survival models because it 

assumes that the baseline hazard is constant, (Lawless, 2003). 

 

 
                                                       
                                                       

ℎ(ݔ|ݐ௝) = ℎ଴(ݐ) exp൫ݔ௝ߚ௫൯																																																							(2.15) 

= exp	(ߚ଴	 exp൫ݔ௝ߚ௫൯) 

=exp(ߚ଴	 +  (௫ߚ௝ݔ

For some constant ߚ଴		, the notation ߚ଴		has been used to emphasize that the constant 

may also be thought of as an intercept term from the linear predictor. Using the well-

known relationships for the exponential model, 

 
                                                           

H൫t|x୨൯ = 	exp൫β଴	 + x୨β୶൯t																																										(2.16) 

        
                                            
                                              

ܵ൫࢚|ݔ௝൯ = exp൛−݁݌ݔ൫ߚ଴	 + ൟݐ௫൯ߚ௝ݔ 																																								(2.17) 

 

 

Therefore, under the exponential PH model, the hazard function of a particular child 
is given by: 

                             
                         

h(t|x) = λ	exp	(β1x1 + β2x2 +⋯+ βpxp = λ	exp ቀβ'xቁ																								(2.18) 
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3.4.2.1Maximum likelihood estimator 
 

Here we are interested in fitting a model to the data. We will use the MLE to find the 
most likely parameters of our model. In this Section, we show how to fit the 
exponential model to the data. 

The parameter that we want to estimate is ߚ	 = 	 (1ߚ,0ߚ) 	 ∈ 	ܴଶ. We first need to find 
the log-likelihood function: 

ఛ݂(ݐ) =
1

exp	(ߚ଴ + ௜ݔଵߚ
exp ൬

ݐ−
exp	(ߚ଴ + ௜ݔଵߚ

൰ ݐ							, > 0, ݅ = 1, … ,݊ 

So 

(ଵߚ,଴ߚ)݈ = log	(ෑ ఛ݂(ݐ) = ෍[−(ߚ଴ + −(௜ݔଵߚ
௜ݐ

exp(ߚ଴ + (௜ݔଵߚ
]

௡

௜ୀଵ

௡

௜ୀଵ

 

We will see that there is a special case in solving the partial derivatives equations 
which gives a closed form, and there is no closed form in the general case 

A special case : ߚଵ 	= 	0 

If we assume that ߚଵ	 is fixed to 0, there is a closed form for ߚመ଴, given by: 

݈݀
଴ߚ݀

(଴ߚ) = 0	 ↔෍
௜ݐ

exp	(ߚ଴)

௡

௜ୀଵ

= ݊	 ↔෍
௜ݐ

exp	(ߚ଴)

௡

௜ୀଵ

= ݊	 ↔ ଴ߚ = log	(̅ݐ) 

 

General case : ߚଵ 	≠ 	0 

In order to find the maximum of the log-likelihood function, we try to set the partial 
derivatives to 0: 

⎩
⎨

⎧
݈݀
଴ߚ݀

൫ߚመ൯ = 0

݈݀
ଵߚ݀

൫ߚመ൯ = 0⎭
⎬

⎫
			↔

⎩
⎪
⎨

⎪
⎧ −݊ +෍

௜ݐ
exp	(ߚመ଴ + (௜ݔመଵߚ

௡

௜ୀଵ

෍
௜ݐ௜ݔ

exp	(ߚመ଴ + (௜ݔଵߚ

௡

௜ୀଵ

−෍ݔ௜ = 0
௡

௜ୀଵ

= 0

⎭
⎪
⎬

⎪
⎫

 

We note that we have no closed form for the solution of the system of equations. 

Hence, an iterative method to find the solution can be used. We propose Newton’s 

method. For more information (see Davison 2006). 
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2.4.3 Gompertz  PH model 

The Gompertz model is available only in PH metric and assumes a baseline hazard 
ℎ଴(ݐ) = exp(ݐߠ) exp(ߚ଴) 																																																		(2.19) 

So that the PH model 

ard  

ℎ൫ݐหݔ௝൯ = ℎ଴(ݐ) exp൫ݔ௝ߚ௫൯																																																		(2.20) 

= exp(ݐߠ) exp	(ߚ଴ +  (௫ߚ௝ݔ

 

 

The survival and hazard function of the Gompertz distribution are given by 

(ݐ)ݏ = exp	ቀఒ
Ѳ

(1 − ݁Ѳ௧)ቁ,  ℎ(ݐ) =  (2.21)                        , (ݐѲ)	expߣ	

 

For 0≤t<∞ and λ>0. The parameter Ѳ determines the shape of the hazard function. 

When Ѳ=0, the survival time then have an exponential distribution, i.e. the 

exponential distribution is also a special case of the Gompertz distribution. Like the 

weibull hazard function, the Gompertz hazard increases or decreases monotonically. 

For the Gompertz distribution, log (h(t)) is linear with t. 

Under the Gompertz PH model, the hazard function of a particular child is given 

ℎ(ݔ|ݐ) = λ exp(Ѳt) exp	(β1x1 + β2x2 + ⋯+ βpxp = λ exp ቀβ′xቁexp	(Ѳt)       (2.22)         

It is straightforward to see that the Gompertz distribution has the PH property. But the 

Gompertz PH model is rarely used in practice. 

2.5 Accelerated Failure Time model(AFT ) 
Although parametric PH models are very applicable to analyse survival data, there are 

relatively few probability distribution for the survival time that can be used with these 
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models. In these situations, the accelerated failure time model (AFT) is an alternative 

to the PH model for the analysis of survival time data. Under AFT models, we 

measure the direct effect of the explanatory variable on the survival time instead of 

hazard, as we do in the PH model. This characteristic allows for easier interpretation 

of the results because the parameters measure the effect of the correspondent 

covariate on the mean survival time. Currently, the AFT model is not commonly used 

for the analysis of clinical trial data, although it is fairly common in the field of 

manufacturing. Similar to PH model, the AFT model describes the relationship 

between survival probabilities and a set of covariates. 

The members of the AFT model class include the exponential AFT model, Weibull 

AFT model, log-logistic AFT model, log-normal AFT model and gamma AFT model.  

Accelerated failure-time models, also known as accelerated–time models or ln(time) 

models, follow the parameterization 

                           ln൫t୨൯ = 	x୨β୶ +∈୨				,∈୨	 		~    Oddly, but not odd given the context 

 

 

In this case ߚ௫ are the coefficients on x and ∈௝				,is the error term. 

The word “accelerated” is used in describing these models because rather than 
assuming that failure ݐ௝ is exponential, Weibull, or some other form- a distribution is 
instead assumed for 

                                                      ௝߬ୀexp	(−ݔ௝ߚ௫)ݐ௝   

and exp	(−ݔ௝ߚ௫) is called the accelerated parameter. If exp	(−ݔ௝ߚ௫) = 1, then    ௝߬ =  , ௝ݐ

and time passes its “normal” rate. If exp	(−ݔ௝ߚ௫) > 1, then   time passes more quickly 

for the subject (time is accelerated), so failure would be expected to occur sooner. If 

exp	(−ݔ௝ߚ௫) < 1, then time passes more slowly for the subject (time is decelerated), so 
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failure would be expected to occur later. The random quantity	ln	( ௝߬) has a distribution 

determined by what Is assumed about the distribution of ௝߬, and in the usual 

nomenclature of these models, it is the distribution of  ௝߬ that is specified(Cleves, 

2010). 

2.5.1 Log-Logistic  model 

One limitation of the Weibull hazard function is that it is a monotonic function of 

time. However, the hazard function can change direction in some situations. The log-

logistic distribution is an accelerated failure time model and has a hazard function 

which can be non-monotonic with respect to time, but if k>1 the hazard has a single 

mode whereby there is initially an increasing hazard followed by a decreasing hazard. 

The log-logistic survival and hazard function are given by 

 
                                                                    s(t) = {1 + e஘t୩}-ଵ,		                                            (2.23) 

                                 h(t) = ୣಐ୩୲ౡ-భ

ଵାୣಐ୲ౡ
					for	0 ≤ t < ∞, k > 0                                          (2.24) 

 

Where ߠand k are unknown parameters and k>0. When k≤1, the hazard rate decreases 

monotonically and when k>1, it increases from zero to a maximum and then 

decreases to zero. 

In the AFT metric,  
                                       ௝߬ = exp൫−ݔ௝ߚ௫൯ ௝ݐ , 

                               ௝߬~loglogistic (ߚ଴,  (ߛ

௝߬ is distributed as loglogistic with parameters (ߚ଴,  with cumulative distribution (ߛ
function 

(߬)ܨ                                                                     = 1 − ൤1 + {exp(−ߚ଴) ߬}
భ
ം൨
ିଵ
																				(2.25) 
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Thus 

                                                                    ln൫ݐ௝൯ = 	 ௫ߚ௝ݔ + ln	( ௝߬) 

                                                                                = ଴ߚ + ௫ߚ௝ݔ +  ௝ݑ

Where ݑ௝ follows a logistic distribution with mean 0 and standard deviation 
ߛߨ

√3ൗ   .  As a result,  

௝൯ݐ൛ln൫ܧ                                                                          หݔ௝ൟ = ଴ߚ +  ௫ߚ௝ݔ

We can also derive the AFT formulation by accelerating the effect of time on survival 

experience. At baseline values of the covariates x,	݆ܶ =  because all covariates are ݆ݐ

equal to zero. Thus the baseline survivor function of  ݐ௝ is obtained from (2.24) to be 

                                                                              ଴ܵ൫ݐ௝൯ = [1 + ൤1 + ൛exp(−ߚ଴) ௝ൟݐ
భ
ം൨
ିଵ

					 

In the AFT model, the effect of the covariates is to accelerate time by a factor of 

exp൫−ݔ௝ߚ௫൯.	Thus for the AFT model, 

                                      ܵ൫ݐ௝ หݔ௝൯ = ଴ܵ{exp൫−ݔ௝ߚ௫൯  {௝ݐ

                                                                                                       

																										= 	[1 + {exp(−ߚ଴) exp൫−ݔ௝ߚ௫൯ {௝ݐ
భ
ം]ିଵ 

                         = 	[1 + {exp൫−ߚ଴ − ௫൯ߚ௝ݔ {௝ݐ
భ
ം]ିଵ 

The log logistic distribution closely resembles the lognormal distribution. Like log-

normal model, the log logistic model has no natural PH interpretation. One advantage 

of the log-logistic model over the lognormal model is that the log logistic model has 

simpler mathematic expressions of the hazard and survivor function. If  ߛ < 1, the log 

logistic hazard increases and then decreases. If ߛ ≥ 1, then the hazard is monotone 

decreasing. 
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2.5.2 Log-normal model 

This model has no PH interpretation. As such it is interpreted in the AFT metric 

(Cleves, 2010). For the lognormal regression model, it is assumed that   

                                                      ௝߬~lognormal (ߚ଴,ߪ) 

௝߬ is distributed as Lognormal with parameters (ߚ௢  with cumulative distribution (ߪ,
functions 

(߬)ܨ                                                        = ߮ ቀ୪୬ ఛିఉబ
ఙ

ቁ 

where ߮() is the cumulative distribution function for the standard Gaussian (normal) 
distribution. Thus 

                                                             
                                                                   ln൫ݐ௝൯ = 	 ௫ߚ௝ݔ + ln	( ௝߬)                                        (2.26) 

 

଴ߚ=         + ௫ߚ௝ݔ +  ௝ݑ

where ݑ௝ follows a standard normal distribution with mean 0 and standard deviation	ߪ. 

That is, for the lognormal model, transforming time into ln(time) converts the 

problem into simple linear regression(with possible censoring). As a result, 

௝൯ݐ൛ln൫ܧ                                                              หݔ௝ൟ = ଴ߚ +  ௫                           (2.27)ߚ௝ݔ

We can also derive the AFT formulation by accelerating the effect of time on survival 

experience at baseline, where all covariates are equal to zero. Thus the baseline 

survivor function of ݐ௝ is obtained as  

                                                            ܵ଴൫ݐ௝൯ = 1 − ߮(
௟௡௧ೕିఉబ

ఙ
)                         (2.28) 

The attractive feature (for some problems) of this distribution is that the hazard 

function is non-monotonic in that it increases and then decreases. 
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2.6. Time dependence properties of the hazard function 

 
The hazard rate is the probability of experiencing an event at time ti. The precise 

shape of the hazard rate-the way it changes with time- is likely to vary from one 

situation to the next. For example, the hazard rate might increase with time in some 

situations: 

                                     ௗ௛(௧)
ௗ௧

> 0 

This means that the risk of an event occurring (child dying) increases with time. This 

type of situation exhibits what is often referred to as positive duration dependence. 

The hazard rate might decrease with time in other situations: 

                                      
ௗ௛(௧)
ௗ௧

< 0 

This means that the risk of an event occurring (child dying) decreases with time. This 

type of situation exhibits what is often referred to as negative duration dependence. 

The hazard rate might be constant across time in still other situations: 

   ௗ௛(௧)
ௗ௧

= 0 

This means that the risk of an event occurring is constant over time. There are also 

other situations with more complicated hazards rates that increase and decrease over 

time or that increase or decrease at faster or slower rates. Exactly how the hazard rate 

varies with time is generally referred to as time dependency. 

The main property of parametric survival models is that they assume a particular 

shape for the hazard rate. For example, the exponential assumes a flat hazard, the 

weibull assumes a monotonic hazard; the log-normal and log-logistic assume a non-
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monotonic hazard. If the characterisation of the underlying time-dependency is 

accurate, the particular distributional function is picked then parameter estimates will 

generally be more precise than estimates from semi-parametric and nonparametric 

models where the underlying time dependency is left unspecified. So, there can be 

advantages to using parametric models. That is it is more informative, predicted 

hazard functions, predicted survival functions and median survival times can be 

obtained.  The effect of covariates is to accelerate or delay the duration of illness by a 

constant amount (acceleration factor or time ratio), the effect size is time ratio which 

is easier to interpret and more relevant to clinician. Problems arise in such a way that 

the AFT assumption must hold and also there is a need to specify the distribution of 

the survival time, but an appropriate distribution may be difficult to identify. 

2.7 Frailty models 
 

Studies on determinants of child mortality have mainly used either logistic regression 

or Cox proportional hazards model assuming that the outcomes are independent. To 

find more accurate estimates for the determinants of child mortality that has critical 

implications for resource allocation for improving child survival, sibling structures in 

child mortality data from demographic surveys have been treated as multivariate 

failure time data (Guo 1993). As failure time data, many attempts have been made to 

extend the Cox proportional hazards model. In this context, the variance-corrected 

Cox model has received much attention (Spiekerman 1998). In the variance-corrected 

Cox model, regression parameters of the determinants are estimated by ignoring intra-

family correlation but adjusted for in the inference procedure; however, it ignores the 

variation of underlying risk among families. To overcome this, multivariate failure 

time data are modelled by an unobserved random quantity called frailties (Vaupel 
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1979). These frailties are common to observations from the same cluster and assumed 

to follow a given statistical distribution, known as multivariate random effects model 

or Cox frailty model.  

In Malawi, studies on child mortality have mainly addressed the role of maternal, 

socioeconomic and health-related determinants. These studies were restricted to the 

analysis of mortality risks in children at individual level and not considered the 

correlation among children of the same family. There is need to emphasize those 

determinants which are nearer in time to the outcome and can be modified by program 

than those which are remote or far apart in time to the outcome of concern. The 

former covariates are referred to as programmable determinants and the latter as 

background variables. Therefore, there is a need to identify the programmable 

determinants of under-five mortality using Cox frailty model to account for sibling-

level correlation for providing valid estimates needed for policy-decision making. In 

order to appreciate the influence of sibling-level correlation over the estimates of the 

determinants of under-five mortality, the results of Cox frailty model can be 

compared with the Cox proportional hazards model and variance-corrected Cox 

model. It is beyond the scope of this study to look at frailty models. 

2.8. Model checking using statistical criteria 

After fitting the Cox model and all the parametric models, the adequacy of model fit 

was assessed using residuals. In linear regression methods, residuals are defined as the 

difference between the observed and predicted values of the dependent variable. 

However, when censored observations are present and partial likelihood function in 

the Cox PH model, the usual concept of residuals is not applicable. Three major 
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residuals are Cox-Snell residual, the deviance residual and the Schoenfeld residual. In 

this study, Cox- Snell residual was used to assess the adequacy of model fit. 

2.8.1.   Residual plots 
 

Residual plots were used to check the goodness of fit of the model. One of the most 

useful plots is based on comparing the distribution of the Cox-Snell residuals with the 

unit exponential distribution. The Cox Snell residual for the ith individual with 

observed time ti is defined as  

௖೔ݎ                                            = (௜|x୧ݐ)෡ܪ = 	−log[sො(t୧|x୧)],                                    

(2.29) 

where t୧ is the observed survival time for individual i, xi is the vector of covariate 

values for individual i, and sො(t୧) is the estimated survival function of the fitted model. 

If the model fits the data well then the true cumulative hazard function conditional on 

the covariate vector has an exponential distribution with a hazard rate of one. In this 

study the fitted parametric models were evaluated and compared using the Cox-Snell 

residuals. For each model, the Cox-Snell residuals were calculated, their survival 

function were estimated using Kaplain –Meier method and then, their cumulative 

hazard functions of these estimations were calculated. Finally, according to the Cox-

Snell residuals, the hazard function graphs were drawn and the better fitted model was 

the one whose graph was closer to the bisector. 

2.8.2 The Akaike Information Criterion (AIC) 

The AIC was used to compare the performance of different parametric models. 

Typically, we would like models whose log-likelihood is big. The AIC is a measure of 

the goodness of fit of an estimated statistical model. The AIC is an operational way of 

trading off the complexity of an estimated model against how well the model fits the 



 

54 
 

data. Akaike’s method penalizes each model’s log likelihood to reflect the number of 

parameter that are being estimated and then compares them. 

For our models discussed, the AIC is given by 

  AIC = -2 log (likelihood) + 2(p+k)                                             (2.30) 

Where p is the number of model covariates and k is the number of model specific 

distributional parameters. That is k=1 for the exponential model, k = 2 for the weibull, 

log logistic and log normal models, and k = 3 for generalised gamma (Klein and 

Moeschberger, 1997). Essentially, you compare the AIC scores for different 

parametric models and then select the one with the smallest AIC score.  

2.9. Data analysis 

Using cross - tabulations, descriptive statistics were obtained to give more 

information about the distribution of the variables. For each category of each variable, 

number of observation and number of failures as well as percentages were obtained. 

Kaplan-Meier estimation was done for each variable to determine the survival curves 

of each categorical predictor. This provided an insight into the shape of the survival 

function for each category. For the categorical variables, log rank test was used to 

compare the survival of two or more groups. 

 

 Univariate analysis was used to identify all the risk factors before proceeding to more 

complicated model. The univariate Cox Proportional hazards models were fitted and 

the hazard ratios as well as the coefficients for child survival from different factors 

were obtained.  Then a full multivariate Cox PH model including all the risk factors 

was also fitted regardless of results of univariate analyses to establish if there were 

some variables which were not significant in the univariate analysis but are significant 

in the multivariate so as to find variables to be included in the final model. The 
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variables were identified as significant using 1%, 5% and 10% significant level. The 

study used up to 10% significance level in order to avoid excluding some important 

variables in the final model. Then the final model which excluded variables which 

were insignificant in both the univariate and multivariate models was fitted. 

The proportionality assumption was checked with graphical method and two 

statistical methods (including time-dependent covariates in the cox model by using 

the tvc and the texp options in the stcox command, and tests based on Schoenfeld 

residuals).Time dependent covariates are interactions of the predictor and time. In this 

analysis the interaction with log (time) was used because this is the most common 

function of time used in time –dependent covariates. If a time –dependent covariate is 

significant, this indicates a violation of the proportionality assumption for that specific 

predictor. The goodness of fit of the Cox PH model was evaluated using Cox-Snell 

residual. If the model fits the data well the true cumulative hazard function 

conditional on the covariate vector has an exponential distribution with a hazard rate 

of one. 

 

Parametric models such as weibull, exponential, gompertz, log normal, and log 

logistic models were fitted to obtain hazard ratios and coefficients. For each kind of 

model, the univariate and multivariate models were fitted. The accelerated failure 

time (AFT) model of weibull, exponential, log-normal and log-logistic is another 

alternative of the Cox PH model and was used when the PH assumption was violated 

 

Residual plots which are also the transformation of the Q-Q plot were used to check 

the AFT assumption and to check the goodness of fit of each parametric model. 

Performance between AFT models was compared using statistical criteria likelihood 
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ratio (LR) test and Akaike information criterion (AIC), a measure of the goodness of 

fit for statistical models. The AIC is a measure of the goodness of fit of regression 

models that is based on the concept of entropy. It can be viewed as the amount of 

information lost when a model is used to describe a set of observations. The AIC 

includes a penalty for number of model parameters and thus represents the trade-off 

between bias and variance. Lower AIC values indicate a better model fit. 

Furthermore, we checked the goodness of fit of the model using residual plots. Post 

estimation test for parametric models was also conducted using Cox-Snell residuals to 

check the goodness of the model fit. The data was analysed using STATA software. 
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Chapter 3 Results  

3.1 Descriptive  
First descriptive statistics were used to give information about the distribution of the 

variables. In this case, the baseline characteristics for each predictor and the outcome 

variable in 19,947 participants were tabulated using the descriptive statistics. Table 3 

gives the descriptive statistics.  

The study involved 19,967 under-five children of which 1,607 were reported to be 

dead and 18,360 were alive. Similar proportions of children from urban and rural 

areas were reported to have died. On the other hand, 8.6% of the children from 

mothers with no education, 8.3% from mothers with primary education, 6.4% from 

mothers with secondary education and 4.7% children from mothers with higher 

education were reported dead. 

Almost similar proportions of children from households which use electricity, 

charcoal or wood as source of cooking fuel were also reported dead. And also, the 

mortality rate was 8.9%, 8.3%, 7.4%, and 5.6% for children from fathers with no 

education, primary education, secondary education, and higher education respectively. 

The mortality rate was 7.6%, 8%, and 8.3% for children with flush toilet, pit latrines, 

no toilet facility respectively. Similarly, the death rate was 6.6% for households with 

two to three members and 8.9% for households with more than eight members. The 

proportions of children who were reported dead were almost similar for children from 

poor, medium and rich households. The proportions of children who were reported 

dead were also approximately similar for children from households with piped water 

and those without piped water. 
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Table 3 Baseline characteristics and outcomes 

Predictor                                           Child is alive Total 
No Yes 

Type of place 
of 
Residence 

Urban 157(8.28) 1,739(91.7) 1,896 
Rural 1,450(8.02) 16,621(91.98) 18,071 
Total 1,607 18,360  

Mother 
education 

No education 289(8.6) 3,083(91.5) 3,372 
Primary edu 1,145(8.3) 12,720(91.7) 13865 
Secondary 168(6.4) 2455(93.6) 2623 
higher 5(4.7) 102(95.3) 107 
Total 1,607 18,360  

Type of 
cooking fuel 

Electricity and gas 16(10.6) 135(89.4) 151 

 Wood and charcoal 1591(8.03) 18,221(91.9) 18356 
 Total 1,607 18,356  
Partner 
education 

No education 187(8.9) 1,904(91.1) 2,091 
Primary edu 1,009(8.3) 11,149(91.7) 12,158 
Secondary 360(7.4) 4,523(92.6) 4,883 
higher 19(5.6) 322(94.4) 341 
Don’t know 7(7.1) 92(92.9) 99 
missing 6(12) 44(88) 50 
Total 1,588 18,032  

Source of 
drinking 
water 

Piped water 274(7.86) 3,212(92.14) 3,486 
Tube well water 904 10,088 10992 
Dug well water 306 3534 3840 
Surface water 91 1189 1280 
Total 1,607 18,360  

Type of toilet 
facility 

Flush  18(7.6) 219(92.4) 1,836 
Pit latrine 1,348(8.02) 15,468(91.9) 16616 
No toilet facility 241(8.3) 2673(91.73) 2914 
Total 1,607 18,360  

Household 
size 

2 to 3 members 153(6.59) 2,170(93.41) 2,323 
4 to 5 members 564(7.67) 6,789(92.33) 7,353 
6 to 7 members 527(8.59) 5,661(91.33) 6,188 
8 to 23 members 363(8.87) 5,661(91.48) 4,094 
Total 1607 18,351  

Wealth index Poorest  339(7.5) 4,195(92.5) 4,534 
Poor 378(8.5) 4,093(91.6) 4,471 
medium 377(8.4) 4,133(91.6) 4,510 
Rich  338(8.9) 3,447(91.1) 3,785 
richest 175(6.6) 2,492(93.4) 2,667 
Total 1,607 18,360  

Access to 
electricity 

No 1,527(8.1) 17,321(91.9) 18,848 

 Yes 80(7.2) 1,039(92.9) 1,119 
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Survival time distribution was estimated for each category of the predictor using the 

K-M method and compared using the log-rank test. This  provided an  insight into the 

shape of the survival function for each group and gave an idea of whether or not 

groups are proportional (i.e. survival functions are approximately parallel). Tests of 

equality across strata, to explore whether or not to include the predictor in the final 

model, were also considered. For the categorical variables, the log-rank test of 

equality across strata which is a non-parametric test was used.  The predictor was 

included in the final model if the test has a p-value of 0.25 or less. This elimination 

scheme was used because all the predictors in the data set are variables that could be 

relevant to the model. The predictor which is insignificant in both the univariate 

analysis and multivariate analysis was also not included in the final model. Table 4 

shows results from the log-rank test. 

Table 4 Log –rank test for equality of survival function 

Variable Chi(1)  p-value 

Area of residence 0.19 0.66 

Mother education 10.4 0.001 

Partner education 5.74 0.01 

Access to electricity 1.05 0.30 

Wealth index 14.95 0.004 

Source of water 2.29 0.51 

Type of toilet facility 4.80 0.02 

Household size 12.26 0.007 

Source of fuel 1.06 0.30 
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From the log-rank test of equality across strata, There is a significant difference in 

child death between mothers and fathers who had secondary education and higher and 

those without any education or with primary education only. There was also a 

significant difference in child mortality between those who were poorest, poor, 

medium, rich, and richest. Similarly there was also a significant difference in child 

death between those who were using at least a toilet facility whether flush or pit 

latrine and those without any toilet facility. Another significant difference in child 

death was due to household size. However, there was no significance difference in 

child mortality between those children living in rural areas and urban areas. There was 

also no significant difference between those using electricity and those using charcoal 

.The table also show no significant difference between those using tapped water and 

untapped water. In addition there was no significance difference in child mortality 

between those household with access to electricity and those without. 

The log-rank test of equality across strata for the predictor mother education has a p-

value of 0.0013, thus mother education was included as a potential candidate in the 

final model. The log-rank test of equality across strata for the predictor source of 

water has a p-value of 0.51 hence was not included in the final model because it was 

also insignificant in both the univariate as well as the multivariate model of Cox and 

all parametric models.  

The log rank-test of equality for the predictor access to electricity has a p-value of 

0.30 thus access to electricity was not included in the final model since it is also not 

significant in both the univariate and multivariate analysis of both Cox and other 

parametric models. 
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The log-rank test of equality for wealth index has a p-value of 0.0048, thus was 

included in the final model. Similarly, the log-rank test of equality for source of 

cooking fuel has a P-value of 0.30, but was still included in the final model because it 

was significant in the multivariate analysis of all the parametric models. In additional, 

the log-rank test of equality for household size is 0.007, thus household size was 

included in the final model.   

The log-rank test of equality across strata for the predictor partner education has a p-

value of 0.017, thus partner education was included in the final model. Similarly type 

of toilet facility was included in the final model because has a p-value of 0.028.On the 

other hand, area of residence was not included in the final model because its log-rank 

test of equality across strata has a p-value of 0.66 which is greater than 0.25 and was 

also not significant in both the univariate and multivariate analysis of both Cox and 

parametric survival models. Figure 2 shows the K-M estimates for different predictors 

and Appendix one shows results of the fitted parametric models with all covariates. 
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Figure 2 Kaplan- Meir curves comparing survival curves for each risk factor 
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3.2. Cox PH Model 

Univariate analysis was used to check all risk factors before proceeding to more 

complicated models. Univariate and multivariate Cox Proportional hazard regression 

model for mother education, area of residence, partner education, Type of toilet 

facility, source of cooking fuel, access to electricity, Source of water, household size, 

and wealth index was used. The likelihood ratio test was considered in both the 

univariate and multivariate Cox PH model.  

From both the univariate and multivariate analysis, Low levels of mother education, 

larger household size, and poor households were significantly associated with high 

under-five mortality rates. Using the multivariate analysis results, there was decreased 

risk for children from mothers who had secondary and higher education (HR=0.81; 

CI= 0.67, 0.97). Larger household sizes of about 8 or more members were 

significantly associated with increased risk of child mortality (p-value=0.005) as 

compared to smaller household size (HR=1.31; 95%CI = (1.08, 1.59)). Similarly, 

children from richest households faces lower hazard (p-value=0.01) as compared to 

children from poor households (HR=0.74, 95% CI=(0.59, 0.93)). In the multivariate 

analysis of Cox PH model use of electricity as the source of cooking fuel was 

significantly associated with higher child mortality rate (P-value=0.02). This is 

different from the Cox PH univariate analysis results where source of cooking fuel 

was not significantly associated with child mortality. From the univariate analysis, 

Households with educated fathers had lower hazard (HR= 0.87) compared with 

household with fathers who had primary or no education (p-value=0.02, 95% CI= 

0.77 to 0.97). Similarly, in the univariate analysis, children from household with no 

toilet facility were at a higher risk of child mortality (HR=1.23) as compared to those 

children from household with a toilet facility (p-value=0.03). From both univariate 
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and multivariate analysis, area of residence, source of water, and access to electricity 

were not significantly associated with child mortality. Table 5 shows both the 

univariate and multivariate results of Cox PH model. Note that urban setting, mother 

with no or primary, use of electricity and gas as as source of cooking fuel, partner 

with no or primary education, use of piped water, availability of toilet facility, 

household size of two to three members poor and no access to electricity were used as 

the reference categories. 

Table 5 Univariate and multivariate Cox PH model for the relative hazard of child mortality 

 Univariate analysis Multivariate analysis 
 Haz.

Ratio 
95%CI p-

value 
Haz.Ratio 95%CI p-value 

Rural area 0.96 (0.81,1.13) 0.67 .86 (0.71, 1.06) 0.16 
Mother with 
secondary and 
higher education 

0.773 (0.66,0.91) 0.001 
.81 (0.67, 0.97) 0.02 

Access to 
electricity 

0.890 (0.71,1.11) 0.31 
1.06 (0.79, 1.41) 0.68 

Wood and charcoal 
as source of fuel 

0.774 (0.47,1.26) 0.30 
.515 (0.29,0.90) 0.02 

Source of water 
Non piped water 1.15 (0.780,1.69) 0.48 .95 (0.86, 1.05) 0.34 
Household size 
4-5 members 1.10 (0.92,1.31) 0.29 1.09 (0.90, 1.30) 0.36 
6-7 members 1.23 (1.02,1.47) 0.02 1.19 (0.99, 1.43) 0.06 
8-23 members 1.31 (1.08,1.58) 0.005 1.31 (1.08, 1.59) 0.006 
 
Having toilet 
facility 

1.225 (1.02,1.47) 0.03 
1.18 (.97, 1.44) 0.10 

Partner with 
secondary and 
higher 

0.87 (0.77,0.97) 0.02 
.94 (0.83, 1.07) 0.36 

Wealth index  
poorest 0.87 (0.75,1.01) 0.08 0.86 (0.75,1.00) 0.05 
medium 0.98 (0.85,1.13) 0.83 0.99 (0.86,1.14) 0.89 
rich 1.04 (0.90,1.21) 0.54 1.04 (0.89,1.21) 0.49 
richest 0.77 (0.64,0.91) 0.004 0.74 (0.59,0.93) 0.01 
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A multivariate Cox PH model was then fit using only covariates which were 

significantly associated with child mortality (Mother education, household size, 

wealth index, type of toilet facility, and source of cooking fuel) at 5% significance 

level. The final multivariate Cox Proportional hazard model which was fitted using 

six is then given by: 

ℎ௜(ݐ) = ℎ଴(ݐ)exp	(−0.20݀݁ݐܽܿݑ݀ܧ	ݐ݋݉ℎ݁ݎ − ݈݁ݑ݂	݃݊݅݇݋݋ܥ0.79
+ ௠௘௠௕௘௥௦	଻	௧௢	଺݁ݖ݅ݏܪ௠௘௠௕௘௥௦0.16	ହ	௧௢	ସ݁ݖ݅ݏܪ0.08
+ ௠௘௠௕௘௥௦	௠௢௥௘	௢௥	଼݁ݖ݅ݏܪ0.26 + ݕݐ݈݂݅݅ܿܽ	ݐ݈݁݅݋ܶ	݋0.15ܰ
− ݏݑݐܽݐݏ	ݐݏ݁ݎ݋݋0.15ܲ − ݏݑݐܽݐݏ	݉ݑ0.01݉݁݀݅ + 0.06ܴ݅ܿℎݏݑݐܽݐݏ
− ݏݑݐܽݐݏ	ݐݏℎ݁ܿ݅ݎ0.21 −  (ݎℎ݁ݐ݂ܽ	݀݁ݐܽܿݑ0.06݁݀

 

After a Cox PH model which included significant variables only is fitted in the 

analysis, the PH assumption assessed.   To check proportionality, time –dependent 

covariates were included in the model. Time dependent covariates are interactions of 

the predictors and time. In this study log (time) was used because this is the most 

common function of time used in time-dependent covariates but any function of time 

could be used. If time dependent covariate is significant it indicates violation of the 

proportionality assumption for that specific predictor. From Table 6, the results 

indicate that the PH assumption for wealth index is violated in some of the categories 

(P-value for medium status times t is 0.01 ). 
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Table 6 Test of Test PH assumptions by including time dependent covariate in 
the model  

predictor Coef. Std. Err. z P-value 95% CI 
main 
Mother education -0.14 0.13 -1.08 0.28 -0.39,0.11 
Source of fuel -0.94 0.35 -2.71 0.01 -1.62,-0.26 
Wealth index 
poorest status -0.30 0.11 -2.66 0.01 -0.52,-0.08 
medium 0.65 0.20 3.26 0.00 0.26,1.05 
rich 0.13 0.11 1.16 0.25 -0.09,0.34 
richest -0.09 0.15 -0.59 0.56 -0.37,0.20 
Household size 
4 to 5 members 0.03 0.13 0.26 0.80 -0.22,0.28 
6 to 7 members 0.06 0.13 0.44 0.66 -0.20,0.31 
8 or more members 0.19 0.14 1.40 0.16 -0.08,0.46 
Type of toilet facility 0.14 0.14 1.01 0.31 -0.13,0.42 
Partner education -0.03 0.09 -0.33 0.74 -0.21,0.15 
tvc 
Mother education -0.05 0.07 -0.73 0.47 -0.20,0.09 
Source of fuel 0.15 0.23 0.65 0.51 -0.30,0.59 
Wealth index 
poorest status 0.10 0.06 1.79 0.07 -0.01,0.22 
medium -0.25 0.10 -2.46 0.01 -0.45,-0.05 
rich -0.05 0.06 -0.90 0.37 -0.17,0.06 
richest -0.10 0.08 -1.24 0.22 -0.26,0.06 
household size 
4 to 5 members 0.04 0.07 0.54 0.59 -0.10,0.18 
6 to 7 members 0.08 0.07 1.14 0.26 -0.06,0.23 
8 or more members 0.05 0.08 0.70 0.49 -0.10,0.21 
Type of toilet facility 0.01 0.08 0.11 0.91 -0.14,0.16 
Partner education -0.02 0.05 -0.38 0.70 -0.12,0.08 

Note: variables in tvc equation interacted with ln(_t) 

The Schoenfeld and scaled Schoenfeld residuals were also used to test the PH 

assumption. The p-value for testing whether the correlation between Schoenfeld 

residual for this covariate 

and ranked survival time was zero was checked. For wealth index, the P-value was 

less than 0.05 for the rich category which suggest that the PH assumption is violated 
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for wealth index, but reasonable for all the other covariates. Table 7 shows the 

schoenfeld results. 

 

Table 7 Test for proportional hazard assumption using schoenfeld residuals 

 rho Chi2 df p-value 

Mother education -0.004 0.03 1 0.85 

Source of fuel 0.02 1.19 1 0.27 

Poorest 0.02 0.79  0.37 

Medium -0.03 2.39  0.12 

Rich -0.04 3.67  0.04 

richest -0.04 2.63  0.10 

Household size 

 4 to 5 members 0.02 0.81 1 0.36 

6 to 7 members 0.04 2.77 1 0.09 

8 or more members 0.03 2.01 1 0.15 

 toilet facility -0.0005 0.001  0.98 

Partner education -0.002 0.01  0.92 

Global test  17.14 11 0.104 

 

For each predictor, graph of the scaled schoenfeld assumption was also obtained. A 

horizontal line in the graphs is further indication that there is no violation of the 

proportionality assumption. Using Figure 3, two categories for wealth index; poorest 

category (status1) and medium category (status2) seem to violate the proportionality 

assumption. Thus, using all the three methods to check the PH assumption, wealth 

index violate the assumption of proportionality.  
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Figure3 Test of PH assumptions graphically using scaled Schoenfeld 
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The goodness of fit was also assessed by Cox-Snell residual plot. Cox –Snell residual 

plot is presented in Figure 4. There is some evidence of a systematic deviation from 

the straight line, which gives us some concern about the adequacy of the fitted Cox 

model. 

 

Figure 4 Cumulative hazard plot of the Cox –Snell residuals for the Cox PH model with significant predictors 

3.3 Parametric Results 

This section presents results for each of the parametric models that were used in this 

study. Both the univariate and multivariate analysis were used for all the fitted 

parametric models appendix 2 shows the results of multivariate analysis using all the 

nine predictors. Table 8 shows the estimates of the parametric models fitted using 

only the variables which were significant at 5% significance level in either the 

univariate or the multivariate of the fitted parametric models using all the nine 

predictors. 
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Table 8 Coefficients and hazard rate from parametric models for under-five children Time to death (n=19460) 

  exponential weibull 
  
Gompertz Log-logistic log-normal 

Predictor Coef. Std. 
Err. 

p-
value Coef. Std 

error 
P-
value Coef. Std. 

Err. 
P-
value Coef. Std. 

Err. 
P-
value Coef Std. 

Err. P-value 

Mother with secondary or 
higher education -0.20 0.09 0.04 -0.20 0.09 0.03 -0.19 0.09 0.04 0.38 0.18 0.03 0.36 0.18 0.04 

Wood and charcoal  -0.77 0.27 0.01 -0.78 0.27 0.00 -0.77 0.27 0.00 1.53 0.53 0.00 1.58 0.56 0.01 
wealth index                               
poorest -0.16 0.08 0.04 -0.15 0.08 0.04 -0.15 0.08 0.04 0.30 0.15 0.04 0.35 0.15 0.02 
medium -0.02 0.07 0.81 -0.01 0.07 0.89 -0.01 0.07 0.93 0.01 0.14 0.92 0.03 0.15 0.98 
rich 0.04 0.08 0.63 0.05 0.08 0.54 0.05 0.08 0.52 -0.10 0.15 0.51 -0.11 0.15 0.48 
richest -0.25 0.10 0.02 -0.23 0.10 0.03 -0.22 0.10 0.04 0.43 0.20 0.03 0.39 0.20 0.04 
household size                               
4 to 5 members -0.03 0.09 0.74 0.04 0.09 0.69 0.07 0.09 0.48 -0.07 0.18 0.68 -0.08 0.18 0.64 
6 to 7 members 0.06 0.09 0.55 0.12 0.09 0.19 0.16 0.09 0.10 -0.24 0.18 0.18 -0.24 0.18 0.19 
8 to 23 members 0.16 0.10 0.10 0.23 0.10 0.02 0.26 0.10 0.01 -0.44 0.19 0.02 -0.45 0.19 0.02 

No toilet facility available 0.17 0.10 0.09 0.16 0.10 0.11 0.15 0.10 0.12 -0.31 0.19 0.11 -0.30 0.19 0.13 

partner with secondary and 
higher education -0.05 0.07 0.42 -0.05 0.07 0.41 -0.05 0.07 0.43 0.11 0.13 0.40 0.11 0.13 0.40 

_cons -4.97 0.29 0.00 -3.45 0.29 0.00 -3.96 0.29 0.00 6.18 0.56 0.00 6.99 0.59 0.00 
/ln_p       -0.63 0.02 0.00                   
p       0.53 0.01 0.51                   
1/p       1.88 0.04                    
/ln_gam                   0.60 0.02 0.00       
/gamma             -0.09 0.00 0.00 1.82 0.04        
/ln_sig                         1.34 0.02 0.00 
sigma                         3.82 0.08  
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3.3.1 Exponential Model 
In the exponential model which was fitted using all the nine variables, mother 

education, and wealth index were found to be significantly associated with child 

mortality in both the univariate and multivariate analysis. In the exponential model, 

Partner education and type of toilet facility and household size was significantly 

associated with child mortality in the univariate analysis but not in the multivariate 

analysis. On the other hand, source of cooking fuel was significantly associated with 

child mortality in the multivariate analysis but not in the univariate analysis. As found 

in the Cox model, area of residence, source of water and access to electricity were not 

significantly associated with child mortality. The fitted hazard function for the 

exponential model is: 

መ௫ߚ௝ݔ = ݎℎ݁ݐ݋݉	݀݁ݐܽܿݑ0.20݁݀− − ݈݁ݑ݂	݃݊݅݇݋݋ܥ0.77 − ݐݏ݁ݎ݋݋݌0.16
− ݉ݑ0.02݉݁݀݅ + ℎܿ݅ݎ0.04 − ݐݏℎ݁ܿ݅ݎ0.25 − ௠௘௠௕௘௥௦	ହ	௧௢	ସ݁ݖ݅ݏܪ0.03
+ ௠௘௠௕௘௥௦	଻	௧௢	଺݁ݖ݅ݏܪ0.06 + 0.16଼	௢௥	௠௢௥௘ + ݕݐ݈݂݅݅ܿܽ	ݐ݈݁݅݋ݐ	݋0.17ܰ
−  ݎℎ݁ݐ݂ܽ	݀݁ݐܽܿݑ݀ܧ0.05

 

 

And ߚመ଴= -4.97 

 the estimate of the baseline hazard is 

 ℎ෠଴(t)=exp (-4.97) =0.007,  

And the estimate of the overall hazard is 

ℎ(ݔ|ݐ௝) = 0.007exp	(−0.20݁݀݀݁ݐܽܿݑ	ݐ݋݉ℎ݁ݎ − ݈݁ݑ݂	݃݊݅݇݋݋ܥ0.77 − ݐݏ݁ݎ݋݋݌0.16
− ݉ݑ0.02݉݁݀݅ + ℎܿ݅ݎ0.04 − ݐݏℎ݁ܿ݅ݎ0.25 − ௠௘௠௕௘௥௦	ହ	௧௢	ସ݁ݖ݅ݏܪ0.03
+ ௠௘௠௕௘௥௦	଻	௧௢	଺݁ݖ݅ݏܪ0.06 + 0.16଼	௢௥	௠௢௥௘ + ݕݐ݈݂݅݅ܿܽ	ݐ݈݁݅݋ݐ	݋0.17ܰ
−  (ݎℎ݁ݐ݂ܽ	݀݁ݐܽܿݑ݀ܧ0.05
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3.3.2. Weibull Model 

In the weibull model which was fitted using all the nine predictors, mother education, 

wealth index and household size were all found to be significantly associated with 

child mortality in both the univariate and multivariate analysis. Source of cooking fuel 

was found to be significantly associated with child mortality in the multivariate 

analysis but not in the univariate analysis. On the other hand toilet facility and partner 

education was found to be significantly associated with child mortality in the 

univariate analysis but not in the multivariate analysis. As found in the Cox and 

Exponential models, area of residence, source of water and access to electricity were 

all insignificantly associated with child mortality. The estimate of shape parameter in 

Weibull was 0.53 which is less than 1 implying that the hazard is monotone 

decreasing and the 95% CI is (0.52, 0.56) which does not cover the null value 

1.Hence the Weibull model is better than the exponential model. The estimated hazard 

function for the ith individual is: 

ℎ෠௜(ݐ) = ᆋିࢽ࢚ࢽ૚࢖࢞ࢋ(ࢼᇱ࢞࢏) 

Where    ᆋିࢽ࢚ࢽ૚   is the baseline hazard function. 

= −3.45 ∗ ݎℎ݁ݐ݋݉	݀݁ݐܽܿݑ݀ܧ(−0.20	଴.ହଷିଵexpݐ0.53 − ݈݁ݑ݂	݃݊݅݇݋݋ܥ0.78
+ ௠௘௠௕௘௥௦	ହ	௧௢	ସ݁ݖ݅ݏܪ0.04 + ௠௘௠௕௘௥௦	଻	௧௢	଺݁ݖ݅ݏܪ0.12
+ ௠௘௠௕௘௥௦	௠௢௥௘	௢௥	଼݁ݖ݅ݏܪ0.23 + ݕݐ݈݂݅݅ܿܽ	ݐ݈݁݅݋ܶ	݋0.16ܰ
− ݏݑݐܽݐݏ	ݐݏ݁ݎ݋݋0.15ܲ − ݏݑݐܽݐݏ	݉ݑ0.01݉݁݀݅ + 0.05ܴ݅ܿℎݏݑݐܽݐݏ
− ݏݑݐܽݐݏ	ݐݏℎ݁ܿ݅ݎ0.23 −  (ݎℎ݁ݐ݂ܽ	݀݁ݐܽܿݑ0.05݁݀

3.3.3. Gompertz model 

As with the other models described, a model with all the nine predictors was fit and 

mother education, household size, and wealth index were found to be associated with 

child mortality in both the univariate and multivariate analysis. Source of cooking fuel 
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was also found to be significantly associated with child mortality in the multivariate 

analysis but not in the univariate analysis. On the other hand, toilet facility and partner 

education was also found to be significantly associated with child mortality in the 

univariate analysis but not in the multivariate analysis. As depicted in Table 8, gamma 

which is the shape parameter is    -0.09, implying that the hazard decreases with time 

(p-value < 0.001). 

In the Gompertz model, there is decreased mortality risk for children born from 

educated mothers (HR=0.82, CI=0.68 to 0.98).children from the educated mothers 

(those with secondary and higher education) face 82% of the hazard that children 

from uneducated mothers (no and primary education only) face. There is a decreased 

risk of child mortality for children from poorest and richest families as compared to 

those from poor families. Children born from poorest households face about 85% of 

the hazards that children from the poor family face (P-value = 0.04, CI=0.73 to 0.99). 

Also children from the richest family face about 80% of the hazard that children from 

the poor family face (P-value = 0.65 to 0.98).  

There is increased child mortality risk for children from households with many 

members as compared to households with few members. In this case, children from 

household with 8 to 23 members faces 30% more hazard than children from 

households with two to three members (P-value = 0.008, CI = 1.07 to 1.57). With 

regard to the source of cooking fuel, children from households which used fire wood 

or charcoal as source of cooking fuel faces 46% of the hazards children from 

households using electricity face( p-value=0.004, CI=0.27 to 0.78). 
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3.3.4. Log-logistic model 

As found in the weibull  and Gompertz model, Mother education, household size, and 

wealth index were found to be significantly associated with child mortality in the 

univariate and multivariate analysis of Gompertz model. Source of Cooking fuel was 

significant in the multivariate analysis only and type of toilet facility and partner 

education were significant in univariate analysis only. At 10% level of significance, 

type of toilet facility was significant. However, area of residence, source of water and 

access to electricity were not significantly associated with child mortality in both the 

univariate and multivariate analysis of log-logistic model. A log-logistic model with 

the significant predictors as well as significant categories was finally fitted. The fitted 

survival function for the ith individual is: 

መܵ௜(ݐ) = {1 + ݐ
ଵ
ఙ exp( ෝ߱௜)}ିଵ 

          

= {1 + t
ଵ

ଵ.଼ଶ exp(ωෝ ୧)}-ଵ 

 

Where 

    ෝ߱௜ = ିఓିఈෝ௫೔
ఋ෡

 

 

=
1

1.82
{(-6.18)	-0.38Educated	mother-1.53Cooking	fuel + 0.07Hsizeସ	୲୭	ହ	୫ୣ୫ୠୣ୰ୱ

+ 0.24Hsize଺	୲୭	଻	୫ୣ୫ୠୣ୰ୱ + 0.44Hsize଼	୭୰	୫୭୰ 	ୣ୫ୣ୫ୠୣ୰ୱ
+ 0.31No	Toilet	facility-0.30Poorest	status-0.01medium	status
+ 0.10Richstatus-0.43richest	status-0.11educated	father} 

  

 The estimated hazard function for the ith individual is: 



 

68 
 

ℎ෠௜(ݐ) =
1
ݐොߪ {1 + ିݐ

ଵ
ఙ exp( − ෝ߱௜)}ିଵ 

  

=
1

1.82t {1 + t- ଵ
ଵ.଼ଶ exp( -ωෝ ୧)}-ଵ. 

Where ωෝ ୧ is as defined above 

 

3.3.5. Log-normal model 

The results of the univariate and multivariate analysis of log-normal model are similar 

to those of log-logistic model. Education of the mother, using fire wood and charcoal 

as source of cooking fuel, small household size, and having more wealth increases the 

survival time of children. From the univariate analysis living in households with no 

toilet facility and living in household with uneducated father, decreases the survival 

time thus increases the hazard rate. From the log-normal model, the hazard is high in 

the first early months of life and then it decreases with time. Figure 5 shows the mean 

hazard for each of the six significant variables separately.  

 

Mathematically, log normal AFT model is given by: 

݈݊൫ݐ௝൯ = ௫ߚ௝ݔ + ݈݊( ௝߬) 

ܶℎݏݑ	 

 
ln൫ݐ௝൯ = 6.99 + ݎℎ݁ݐ݋݉	݀݁ݐܽܿݑ݀ܧ0.36 + ݈݁ݑ݂	݃݊݅݇݋݋ܥ1.58 − ݖ݅ݏܪ0.08 ସ݁	௧௢	ହ	௠௘௠௕௘௥௦

− ௠௘௠௕௘௥௦	଻	௧௢	଺݁ݖ݅ݏܪ0.24 − ௠௘௠௕௘௥௦	௠௢௥௘	௢௥	଼݁ݖ݅ݏܪ0.45
− ݕݐ݈݂݅݅ܿܽ	ݐ݈݁݅݋ܶ	݋0.30ܰ + +ݏݑݐܽݐݏ	ݐݏ݁ݎ݋݋0.35ܲ ݏݑݐܽݐݏ	݉ݑ0.01݉݁݀݅
− 0.11ܴ݅ܿℎݏݑݐܽݐݏ + +ݏݑݐܽݐݏ	ݐݏℎ݁ܿ݅ݎ0.39 {ݎℎ݁ݐ݂ܽ	݀݁ݐܽܿݑ0.11݁݀
+ ln	( ௝߬) 
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Where the random quantity ln	( ௝߬) has a distribution determined by what is assumed 

about the distribution of ௝߬ . In this case ௝߬  follows a log-normal distribution, which 

implies that ln	( ௝߬) follows a normal distribution. Figure 5 show that the hazard 

function decreases with time. 

l 

 

 

           
           

           

           
           
 

         
 

           

           

           

           
           
 

 

           

           
           

           

           

           
           

Figure 5Hazard functions for lognormal model 
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3.4. Determining the best model fit 
 

After fitting the Cox and the parametric models, the models were compared using the 

Akaike Information Criterion. In addition, the goodness of fit for each of the 

parametric model was also established. 

3.4.1. Model selection 

The AIC was used to compare the models and each model was fitted using mother 

education, partner education, source of cooking fuel, type of toilet facility, household 

size, and wealth index. Table 9 shows the AIC for each model. Comparing the AIC of 

parametric models, the log-normal model has the smallest AIC scores 

(AIC=15,114.96) hence it appears to be an appropriate parametric model according to 

AIC. It is followed by Gompertz (AIC=15,143.9) model and then log-logistic 

(AIC=15232.71). 

Table 9 Akaike Information Criterion(AIC) in the parametric models (n=19460) 

Distribution LL(null) LL(model df AIC 

Exponential -8,350.26 -8,329.9 12 16,683.89 

Weibull -7,857.76 -7,837.28 13 15,700.57 

Gompertz -7,793.57 -7,772.6 13 15,571.2 

Loglogistic -7,846.67 -7,825.89 13 15,677.79 

Lognormal -7,765.62 -7,745.70 13 15,517.4 
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3.4.2. Cox Snell Residual 

Furthermore, the goodness of fit of the model was checked using residual plots. The 

cumulative hazard plot of the Cox-Snell residuals in all the parametric models is 

presented in Figure 6 From the plot Cox-Snell residual plot for log-normal model 

seems to fit the data well as compared to the plots of the other models since the 

plotted point lies closer to the line that has a unit slope and zero intercept. On the 

other hand exponential model is the poorest fit since there is so much deviation of the 

Cox-Snell residual plot from the 45 degree straight line. So based on the AIC and 

Cox-Snell residual plots, log-normal AFT is the most suitable model as compared to 

the other parametric models.  
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Figure 6 Cumulative hazard plot of the Cox Snell residual for parametric models 
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 Chapter 4 Discussions 
 

The aim of this study was to investigate the comparative performance of Cox and 

parametric models in the survival of under-five children exposed to different 

household environments. The Cox model as well as parametric models was fitted in 

this study using nine variables. The PH assumption of Cox model was assessed using 

three different methods; adding time dependent covariate to the model, using 

Schoenfied residuals and using graphs of scaled schoenfeld residuals. In all the 

methods, the PH assumption was violated for wealth status. And yet the PH 

assumption must always hold if the results from the Cox model are to be reliable. The 

study further assessed the adequacy of the fitted Cox model using Cox snell residuals 

and the Cox model shows some lack of fit, and also comparing the Cox Snell residual 

of Cox and of Log-normal, the Cox-Snell residual for lognormal was better, hence 

there are some doubts about the suitability of the fitted Cox model.  

The Akaike Information criterion was used to evaluate among the parametric models 

and log-normal model has the smallest Akaike scores hence was found to be the 

suitable model followed by Gompertz and then Log logistic. The study also evaluated 

the adequacy of the fitted parametric models using Cox Snell residuals and again 

lognormal indicated a better fit followed by Gompertz and then log logistic. Both log-

normal and log-logistic does not have PH metric, they are in AFT metric. In this 

study, the PH assumption was somehow violated and these AFT models have proved 

to be fruitful. Although Weibull is the most widely used parametric proportional 

hazards model (Collette, 2003), Gompetz PH model has been found to be a better 

model than weibull. Exponential model had the highest akaike score amongst the 
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parametric models and its Cox Snell residual plot showed lack of fit hence it is also 

not the best model to use in the analysis of child survival. Therefore, based on AIC 

criteria and Cox-Snell residuals the study finally concludes that the log-normal model 

is the best fitting parametric model. The hazard rate for the log-normal model was 

computed for each of the six variables and the hazard rates are generally declining 

over time which is consistent with the well-known fact that the risk of death in Africa 

is high at very young ages and then declines rapidly beyond one and two years of age. 

For all the covariates, the results show that the hazard is high in the first six month of 

life but it is very high for children from mothers or fathers with no or primary 

education, for children from households with no toilet facility, for children from 

households which use electricity as a source of cooking fuel, for children from 

households with more members. Appendix two shows the baseline hazard for all 

parametric models. 

The Cox PH model is the most widely used way of analysing survival data in the 

clinical research. From the review of literature of survival analysis, there are few 

studies using the Cox PH models that check PH assumption (Altman et al, 1985). 

However, PH assumption is not always satisfied in the data. There are various 

solutions to consider if the PH assumption does not hold. One of the alternative 

methods for the analysis of survival data even when the hazards are not proportional 

is use of the AFT model that does not assume PH metric like log logistic and log 

normal model AFT model. Based on asymptotic results, AFT models lead to more 

efficient parameter estimates than Cox model when the PH assumption is violated 

(Cleves 2010). 

This study explored the impact of household socioeconomic and environmental 

determinants on child mortality and the univariate and multivariate analysis of both 
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Cox and parametric models was used. Mother education, wealth index, and household 

size were found to be significantly associated with child mortality in both the 

univariate and multivariate analysis of both Cox and parametric models except in the 

univariate and multivariate analysis of exponential model where household size was 

not significantly associated with child mortality. Source of cooking fuel was 

significantly associated with child mortality in the multivariate analysis of both Cox 

and Parametric models but not in the univariate analysis. On the other hand, partner 

education and type of toilet facility were all significantly associated with child 

mortality in the univariate analysis only of both Cox and Parametric models. On the 

other hand, area of residence, source of water and access to electricity were not 

significantly associated with child mortality in both the univariate and multivariate 

analysis of both Cox and Parametric models. 

Mother education was significantly associated with child mortality. The results 

indicate that risk of child mortality are lower among women having secondary and 

higher education than those having no or primary education. These results are 

consistent with the findings from previous research by Zerai(1996), Mutunga (2004), 

Omulaubi(1995) and uthman(2008).  Mutunga (2007) argues that maternal education 

works through three different pathways. It influences the socio-economic level of 

households, govern mothers attitude, and influences her behaviour (including health 

seeking) on issues relating to health of their children. Uthman and Mubashir B. (2008) 

concluded that mother education played a protective role against death and suggest 

that improving maternal education may be a key to improving child survival in 

Nigeria since educated mother had a better chance of satisfying important factors that 

can improve infant survival: the quality of feeding, general care, household sanitation, 

and adequate use of preventive and curative health services. 
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There was decreased child mortality risk for children born from poorest and richest 

households as compared to those children born from poor households. The reduction 

in child mortality among the poorest families may be due to underreporting of under-

five deaths. These results are consistent with the findings of Mojekwu (2012) and 

Mutunga (2004) where better survival prospects were also found to exist for children 

born in wealthier families but not poorest families. Wealth status is associated with 

the availability of nutritional resources, which is especially important for the survival 

of a child because once infants reach the age of six months; they can no longer depend 

on nourishment from breast milk alone. Children from poor households are exposed 

to risk of diseases through inadequate water and sanitation, Crowding and poor 

housing conditions. They are also, more likely to have lower resistance to infectious 

diseases because they are undernourished (WHO 2002).  

There is increased child mortality risk for children born from households with many 

family members as compared to children born from households with few members. 

Burstrom (1999) found similar results and he suggested that small household size 

contribute a lot to the reduction of infant and child mortality due to the family ability 

to afford better facilities and nutrition. Thus increase the probability of survival in 

children. These results are different from the findings of Mutunga (2004) where 

household size was negatively related to child mortality. That is lower child survival 

prospects were experienced in smaller households. 

With regard to the source of cooking fuel, children born in households using less 

polluting fuels such as electricity and gas  as their main source of cooking fuel have 

higher mortality rates as compared to those using high polluting fuels like Charcoal 

and fire wood. This result is like that because the number of households using 

electricity was relatively small as compared to those using charcoal or wood, and also 
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most of them were urban dwellers. The results are contrary to the findings of Mutunga 

(2007) and Mojekwu (2012) where high polluting fuels was associated with high child 

mortality rates.  

 

Children from household with no toilet facility faces increased mortality risk as 

compared to those children from a household with either flush toilet or pit latrine. 

Children born in households with either flush toilet or pit latrines have lower 

mortality rate than those born in households without any toilet facility. This 

underscores the importance of good quality sanitation in the prevention of diseases 

such as cholera, diarrhoea and dysentery. Modern sanitation technology ensures the 

proper disposal of human waste, which is important in preventing the spread of these 

diseases. Mojekwu  (2012), and  Mutunga(2004) also found similar results 

Children from educated fathers (secondary and higher) experiences decreased 

mortality rate as compared to children from uneducated fathers. These results are 

consistent with the findings of Mturi and Curtis(1995), and Agha (2010) who found 

that father’s literacy was associated with under-five mortality. He suggested that an 

educated husband can make better decisions and seek timely and appropriate 

treatment for his children. Father education was significant in the univariate analysis 

but not in the multivariate analysis. This may be so because mother education was 

also affected by partner education since more educated women may be able to marry 

men who are educated and can care more about children. 

Area of residence was not significantly associated with child mortality. There was no 

significant difference in the risk of child mortality for children from rural and urban 

areas. These results agrees with the argument of Akoto and Tabutin (1989) who 
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argued that it is not much the fact that living in urban setting that provides the 

advantage in terms of mortality to children born of urban mothers, but Socioeconomic 

factors instead. This includes high concentration of salaried workers (who generally 

have higher incomes) in urban centres, better education in urban areas and 

concentration of public infrastructure in urban areas that provides sanitation services 

including water supply, household waste and excreta removal and disinfection and 

better hospital infrastructure in the urban areas. On the contrary, Mturi and Curtis 

(1995) found that under-five mortality risk was associated with area of residence. In 

this case Children from rural areas were at a higher risk than those children born in 

urban areas. But the rapid growth of the urban population has reduced the child 

mortality gap which was there between children from urban and rural. This rapid 

population growth in the urban has strained the ability of local areas to provide 

adequate levels of infrastructure and public services, resulting in environmental 

threats on child health such as poor sanitation, water supply, and access to health care. 

Access to electricity is not statistically significantly associated with child mortality. 

There is no significant difference in child mortality between children from households 

with electricity and those without. These results are different from the findings of 

Mutunga (2004) who found lower mortality rates in the households with electricity. 

Source of drinking water was not significantly associated with child mortality rates. 

This could be due to the consistent use of water guard or boiled water by households 

without access to tapped water (Kumwenda 2009). It might also be due to the use of 

boreholes in the villages since ground water is relatively a safe source of portable 

water in rural areas as compared with other unprotected water sources like river, 

spring, well water etc. Similarly those households which use piped or tapper water, 

they do share the taps as a result, containers used for collection and transportation of 



 

79 
 

water from boreholes are mostly without covers. It is always observed that when 

lifting and balancing the collection vessel on the head, fingertip-dipping is common 

and unavoidable resulting in contaminated water. This, leads to no significant 

difference in child mortality between those using tapped and untapped water. These 

results are different from the findings of Mutunga (2004), Cornelia K. and Ingo P. 

(2011) who observed higher mortality rates among infants and children who lack 

access to safe drinking water. 
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Chapter 5 Conclusion and recommendation 

In this study, low levels of mother education, poor wealth status of the household, 

large household size and Source of Cooking fuel, have been found to be significantly 

associated with higher under-five children mortality risk. From the univariate 

analysis, low father education levels and no toilet facility have been also found to be 

significantly associated with high child mortality risk. On the other hand, area of 

residence, source of drinking water and access to electricity were not significantly 

associated with child mortality. Source of cooking fuel was related to child mortality. 

In this case, those using less polluting fuels like electricity had higher mortality rates 

as compared to those using more polluting fuels like charcoal and wood. This is in 

contrast with the findings of other similar studies, as such, there is a need for further 

research. 

 In addition, previous studies have found area of residence to be significantly 

associated with child mortality. This is different from the findings of this study, thus 

calling for further studies as to why the gap in child mortality is now minimal 

between rural and urban dwellers. One main disadvantage of using the parametric 

model is that the specific distribution of survival time is unknown in many cases. 

Further study of this data could attempt using a non-parametric version of the AFT 

model which does not require the specification of the distribution that can be applied 

in child mortality data (Wei, 1992).The results from this model could then be 

compared with the standard AFT model and Cox PH models. 

Despite our intention in recording all covariates relevant to a specific analysis, we 

might encounter heterogeneity in the sample that cannot be explained by the observed 

covariate alone. Further similar studies should consider using frailty models as these 
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can be informative. Then compare the performance of Cox frailty models with that of 

the standard Cox model. 

In summary, the results of the current study suggest that when implementing survival 

analysis in under-five child mortality, using the PH model may not be the optimum 

approach. It is important to identify the distribution of Overall survival and to seek for 

an appropriate model like AFT models for data analysis. The results from an AFT 

model are easily interpreted and provide a more appropriate description of survival 

time in many researches, and should be considered as an alternative to the Cox PH 

model. 

The choice of the appropriate model will certainly lead to identify real factors that are 

associated with child mortality, thereby help to have a more effective interventions. 
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Appendix 1 Parametric Univariate Estimates  
Appendix 1 shows the Coefficients and Hazard ratios for univariate analysis for exponential PH, weibull PH, Gompertz PH, lognormal 

AFT and log-logistic AFT model. From the table, Mother Education, household size, type of toilet facility, and partner education were 

significantly associated with child mortality in all the five parametric models. 

 

Predictor 
exponential  weibull Gompertz Log-logisic Log-normal 

Haz. Ratio Std. 
Err. 

p-
value 

Haz. 
Ratio 

Std. 
Err. 

p-
value 

Haz. 
Ratio 

Std. 
Err. 

P-
value Coef. Std.

Err 
P-
value Coef. Std.

Err 
P-
value 

Mother education 0.78 0.06 0.001 0.78 0.06 0.001 0.78 0.06 0.001 0.48 0.15 0.001 0.43 0.15 0.005 

Area of residence 0.97 0.08 0.7 0.97 0.08 0.68 0.96 0.08 0.64 0.08 0.16 0.64 0.09 0.17 0.57 
electricity 0.88 0.1 0.25 0.89 0.1 0.3 0.9 0.1 0.35 0.22 0.22 0.31 0.19 0.22 0.4 
Source of fuel 0.8 0.2 0.38 0.79 0.2 0.34 0.78 0.2 0.32 0.5 0.49 0.31 0.59 0.52 0.26 
Source of water 1.00 0.05 0.99 1.00 0.05 0.99 1.00 0.05 0.99 0.01 0.09 0.98 0.01 0.09 0.96 
Household size                               

4 and 5 members 0.99 0.09 0.90 1.06 0.10 0.55 1.09 0.10 0.37 -0.11 0.17 0.54 -0.11 0.17 0.53 
6 and 7 members 1.11 0.10 0.26 1.18 0.11 0.07 1.22 0.11 0.03 -0.32 0.18 0.07 -0.32 0.18 0.07 

8 and 23 members 1.20 0.12 0.06 1.27 0.12 0.01 1.32 0.13 0.00 -0.47 0.18 0.01 -0.48 0.19 0.01 
Toilet facility 1.26 0.12 0.02 1.24 0.12 0.02 1.22 0.11 0.03 -0.4 0.18 0.03 -0.37 0.18 0.04 
Partner education 0.87 0.05 0.02 0.87 0.05 0.02 0.87 0.05 0.02 0.26 0.11 0.02 0.24 0.11 0.04 
Wealth index                               

poor 0.86 0.06 0.06 0.87 0.06 0.06 0.87 0.06 0.06 0.27 0.14 0.06 0.30 0.15 0.04 
medium 0.97 0.07 0.71 0.98 0.07 0.78 0.98 0.07 0.82 0.03 0.14 0.81 0.02 0.15 0.82 

rich 1.02 0.07 0.73 1.03 0.07 0.82 1.04 0.07 0.57 -0.07 0.14 0.58 -0.08 0.15 0.56 
richest 0.78 0.06 0.001 0.76 0.06 0.003 0.76 0.07 0.004 0.51 0.17 0.03 0.003 0.18 0.02 
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Appendix 2 Multivariate parametric results 

  
  
exponential 

  
weibull gompertz 

loglogistic 
 lognormal 

predictor Haz. 
Ratio Std. Err. P>z Haz. 

Ratio 
Std. 
Err. P>z Haz. 

Ratio 
Std. 
Err. P>z Coef. Std. 

Err. P>z Coef. Std. 
Err. P>z 

Area Of residence 0.86 0.09 0.15 0.87 0.09 0.16 0.87 0.09 0.16 0.28 0.20 0.16 0.27 0.20 0.19 

highedu 0.81 0.08 0.03 0.81 0.08 0.03 0.82 0.08 0.03 0.39 0.18 0.03 0.37 0.18 0.04 

Access to electricity 1.07 0.16 0.66 1.07 0.16 0.66 1.08 0.16 0.62 -0.12 0.28 0.66 -0.11 0.28 0.70 

fuel 0.53 0.15 0.03 0.52 0.15 0.02 0.53 0.15 0.03 1.29 0.56 0.02 1.35 0.59 0.02 

poorest 0.86 0.06 0.04 0.86 0.07 0.05 0.86 0.07 0.05 0.30 0.15 0.04 0.34 0.15 0.02 

medium 0.98 0.07 0.75 0.98 0.07 0.83 0.99 0.07 0.86 0.03 0.14 0.86 0.01 0.15 0.93 

rich 1.02 0.08 0.81 1.03 0.08 0.71 1.03 0.08 0.68 -0.06 0.15 0.68 -0.07 0.16 0.64 

richest 0.72 0.08 0.01 0.73 0.09 0.01 0.73 0.09 0.01 0.60 0.23 0.01 0.56 0.23 0.02 

water2 0.95 0.05 0.32 0.95 0.05 0.34 0.96 0.05 0.36 0.09 0.10 0.35 0.09 0.10 0.39 

hsize                               
4 to 5 members 0.97 0.09 0.78 1.04 0.10 0.66 1.07 0.10 0.46 -0.08 0.18 0.65 -0.09 0.18 0.61 

6 to 7 members 1.07 0.10 0.48 1.14 0.11 0.15 1.18 0.11 0.08 -0.25 0.18 0.15 -0.25 0.18 0.16 

8 or more members 1.19 0.12 0.07 1.27 0.13 0.02 1.32 0.13 0.01 -0.47 0.19 0.01 -0.48 0.19 0.01 

Type of toilet facility 1.20 0.12 0.07 1.19 0.12 0.09 1.18 0.12 0.10 -0.33 0.19 0.09 -0.31 0.19 0.11 

Partner education 0.94 0.06 0.39 0.94 0.06 0.38 0.95 0.06 0.40 0.11 0.13 0.37 0.12 0.13 0.37 

Constant                   6.07 1.00 0.00 6.85 1.02 0.00 

ln_p       -0.63 0.02 0.00     0.00             
p       0.53 0.01 0.51           0.00       
1/p       1.88 0.04 1.80                   
/ln_gam                   0.60 0.02 1.75       
gamma             -0.09 0.00   1.82 0.04         
/ln_sig                         1.34 0.02 0.00 

sigma                         3.82 0.08 3.67 
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Appendix 3 Hazard functions for different parametric models 
fitted 
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Appendix 4 Relevant pages from the Women and Household   
2010 MDHS Questionnaires 
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